Publications by authors named "Zhucheng Chen"

Resonance Raman spectroscopy has been performed on a set of cytochrome P450 BM3 heme domains in which mutation of the highly conserved Phe393 induces significant variation in heme iron reduction potential. In previous work [Chen, Z., Ost, T.

View Article and Find Full Text PDF

Nucleosomes are basic repeating units of chromatin and form regularly spaced arrays in cells. Chromatin remodelers alter the positions of nucleosomes and are vital in regulating chromatin organization and gene expression. Here we report the cryo-EM structure of chromatin remodeler ISW1a complex from Saccharomyces cerevisiae bound to the dinucleosome.

View Article and Find Full Text PDF

Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair.

View Article and Find Full Text PDF

DNA wraps around the histone octamer to form nucleosomes, the repeating unit of chromatin, which create barriers for accessing genetic information. Snf2-like chromatin remodellers couple the energy of ATP binding and hydrolysis to reposition and recompose the nucleosome, and have vital roles in various chromatin-based transactions. Here we report the cryo-electron microscopy structure of the 12-subunit human chromatin-remodelling polybromo-associated BRG1-associated factor (PBAF) complex bound to the nucleosome.

View Article and Find Full Text PDF

The central spindle spatially and temporally regulates the formation of division plane during cytokinesis in animal cells. The heterotetrameric centralspindlin complex bundles microtubules to assemble the central spindle, the mechanism of which is poorly understood. Here, we determined the crystal structures of the molecular backbone of ZEN-4/CYK-4 centralspindlin from , which revealed the detailed mechanism of complex formation.

View Article and Find Full Text PDF

Chromatin remodeler ALC1 (amplification in liver cancer 1) is crucial for repairing damaged DNA. It is autoinhibited and activated by nucleosomal epitopes. However, the mechanisms by which ALC1 is regulated remain unclear.

View Article and Find Full Text PDF

Background: Pulmonary capillary hemangiomatosis (PCH) is a very rare and refractory pulmonary vascular disease that causes pulmonary hypertension. Differentiation of PCH from idiopathic pulmonary arterial hypertension (iPAH) is essential because treatment and prognosis can vary greatly between these two diseases.

Case Presentation: A 20-year-old female and a 33-year-old male both presented with progressive exertional dyspnea and cough.

View Article and Find Full Text PDF

Epithelial cell transforming 2 (Ect2) protein activates Rho GTPases and controls cytokinesis and many other cellular processes. Dysregulation of Ect2 is associated with various cancers. Here, we report the crystal structure of human Ect2 and complementary mechanistic analyses.

View Article and Find Full Text PDF

The RSC complex remodels chromatin structure and regulates gene transcription. We used cryo-electron microscopy to determine the structure of yeast RSC bound to the nucleosome. RSC is delineated into the adenosine triphosphatase motor, the actin-related protein module, and the substrate recruitment module (SRM).

View Article and Find Full Text PDF

Chromatin remodelers alter the position and composition of nucleosomes, and play key roles in the regulation of chromatin structure and various chromatin-based transactions. Recent cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies have shed mechanistic light on the fundamental question of how the remodeling enzymes couple with ATP hydrolysis to slide nucleosomes. Structures of the chromatin remodeler Snf2 bound to the nucleosome reveal the conformational cycle of the enzyme and the induced DNA distortion.

View Article and Find Full Text PDF

In the version of this article initially published, the date of publication (13 March 2019) was incorrect. The correct date is 14 March 2019. The error has been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Chromatin remodelers are diverse enzymes, and different models have been proposed to explain how these proteins work. Here we report the 3.3 Å-resolution cryogenic electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae ISWI (ISW1) in complex with the nucleosome in adenosine diphosphate (ADP)-bound and ADP-BeF-bound states.

View Article and Find Full Text PDF

Chromatin remodellers include diverse enzymes with distinct biological functions, but nucleosome-sliding activity appears to be a common theme. Among the remodelling enzymes, Snf2 serves as the prototype to study the action of this protein family. Snf2 and related enzymes share two conserved RecA-like lobes, which by themselves are able to couple ATP hydrolysis to chromatin remodelling.

View Article and Find Full Text PDF

Short-chain fatty acids and their corresponding acyl-CoAs sit at the crossroads of metabolic pathways and play important roles in diverse cellular processes. They are also precursors for protein post-translational lysine acylation modifications. A noteworthy example is the newly identified lysine 2-hydroxyisobutyrylation (K) that is derived from 2-hydroxyisobutyrate and 2-hydroxyisobutyryl-CoA.

View Article and Find Full Text PDF

Chromatin remodellers are helicase-like, ATP-dependent enzymes that alter chromatin structure and nucleosome positions to allow regulatory proteins access to DNA. Here we report the cryo-electron microscopy structure of chromatin remodeller Switch/sucrose non-fermentable (SWI2/SNF2) from Saccharomyces cerevisiae bound to the nucleosome. The structure shows that the two core domains of Snf2 are realigned upon nucleosome binding, suggesting activation of the enzyme.

View Article and Find Full Text PDF

Kinesins hydrolyse ATP to transport intracellular cargoes along microtubules. Kinesin neck linker (NL) functions as the central mechano-chemical coupling element by changing its conformation through the ATPase cycle. Here we report the crystal structure of kinesin-6 Zen4 in a nucleotide-free, apo state, with the NL initial segment (NIS) adopting a backward-docked conformation and the preceding α6 helix partially melted.

View Article and Find Full Text PDF

ISWI is a member of the SWI2/SNF2 family of chromatin remodellers, which also includes Snf2, Chd1, and Ino80. ISWI is the catalytic subunit of several chromatin remodelling complexes, which mobilize nucleosomes along genomic DNA, promoting replication progression, transcription repression, heterochromatin formation, and many other nuclear processes. The ATPase motor of ISWI is an autonomous remodelling machine, whereas its carboxy (C)-terminal HAND-SAND-SLIDE (HSS) domain functions in binding extranucleosomal linker DNA.

View Article and Find Full Text PDF

NuA4 catalyzes the acetylation of nucleosomes at histone H4, which is a well-established epigenetic event, controlling many genomic processes in Saccharomyces cerevisiae. Here we report the crystal structures of the NuA4 core complex and a cryoelectron microscopy structure with the nucleosome. The structures show that the histone-binding pocket of the enzyme is rearranged, suggesting its activation.

View Article and Find Full Text PDF

Actin polymerizes and forms filamentous structures (F-actin) in the cytoplasm of eukaryotic cells. It also exists in the nucleus and regulates various nucleic acid transactions, particularly through its incorporation into multiple chromatin-remodeling complexes. However, the specific structure of actin and the mechanisms that regulate its polymeric nature inside the nucleus remain unknown.

View Article and Find Full Text PDF

SWI2/SNF2 family proteins regulate a myriad of nucleic acid transactions by sliding, removing and reconstructing nucleosomes in eukaryotic cells. They contain two RecA-like core domains, which couple ATP hydrolysis and DNA translocation to chromatin remodeling. Here we report the crystal structure of Snf2 from the yeast Myceliophthora thermophila.

View Article and Find Full Text PDF

The bacterium Escherichia coli remains the leading host for protein expression in large quantity for the purpose of crystallization or other biochemical studies. However, expression of multicomponent protein complexes remains a challenge, and is often laborious and time-consuming. Here we developed a method named EcoExpress, which allows efficient construction of plasmids to express individual protein with user-defined epitope-tag, followed by one-pot assembly of a single vector to express the entire protein complex for copurification.

View Article and Find Full Text PDF