CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase () gene in melon. The constructed vectors were delivered to host plants using -mediated transformation.
View Article and Find Full Text PDFThere are three main challenges to improving sclerotinia stem rot (SSR) resistance in rapeseed ( L.). First, breeding materials such as the backbone parents have not been extensively investigated, making the findings of previous studies difficult to directly implement.
View Article and Find Full Text PDFA major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.).
View Article and Find Full Text PDFRapeseed (Brassica napus L.) is an important oil crop worldwide, and effective weed control can protect its yield and quality. Farmers can benefit from cultivars tolerant to herbicides such as glyphosate.
View Article and Find Full Text PDFBnPGIPs interacted with Sclerotinia sclerotiorum PGs to improve rapeseed SSR resistance at different levels; the BnPGIP-overexpression lines did not affect plant morphology or seed quality traits. Plant polygalacturonase-inhibiting proteins (PGIPs) play a crucial role in plant defence against phytopathogenic fungi by inhibiting fungal polygalacturonase (PG) activity. We overexpressed BnPGIP2, BnPGIP5, and BnPGIP10 genes in an inbred line 7492 of rapeseed (Brassica napus).
View Article and Find Full Text PDFSclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is the most serious disease affecting the yield of the agriculturally and economically important crop Brassica napus (rapeseed). In this study, Oryza sativa polygalacturonase-inhibiting protein 2 (OsPGIP2) was found to effectively enhanced rapeseed immunity against S. sclerotiorum infection.
View Article and Find Full Text PDF