Publications by authors named "Zhuangzhuang Huang"

The formation of amide bonds via aminolysis of esters by lipases generates a diverse range of amide frameworks in biosynthetic chemistry. Few lipases have satisfactory activity towards bulky aromatic amines despite numerous attempts to improve the efficiency of this transformation. Here, we report the discovery of a new intracellular lipase (Ndbn) with a broad substrate scope.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant cardiomyopathy, which is one of the most common reasons for cardiac arrest in children or adolescents. It is characterized by ventricular hypertrophy (usually left ventricle), small ventricular cavity, and reduced ventricular diastolic compliance found by echocardiography in the absence of abnormal load (such as hypertension or aortic stenosis). HCM is usually caused by mutations in genes encoding sarcomere or sarcomere-related genes.

View Article and Find Full Text PDF

Maxim. is an important medicinal and ornamental plant. The length of chloroplast genome was 159,691 bp, with a large single-copy region of 79,503 bp, a small single-copy region of 18,106 bp, and two inverted repeat regions of 31,041 bp each.

View Article and Find Full Text PDF

To understand the acid-resistant mechanism of bioleaching microorganism Acidithiobacillus caldus CCTCC M 2018054, its physiology and metabolic changes at the transcriptional level under extreme acid stress were systemically studied. Scanning electron microscopy (SEM), Fourier transform infrared reflection (FTIR) and X-ray diffraction (XRD) showed that with an increase in acidity, the absorption peak of sulfur oxidation-related functional groups such as S-O decreased significantly, and a dense sulfur passivation film appeared on the surface of the ore. Confocal laser scanning microscopy (CLSM) revealed that coverage scale of extracellular polymeric substance (EPS) and biofilm fluctuated accordingly along with the increasing acid stress (pH-stat 1.

View Article and Find Full Text PDF

We aimed to investigate the material basis and mechanisms underlying the antitumor activity of flower by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A compound-protein interaction network for cancer was constructed to identify potential drug targets, and then the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to elucidate the pathways involved in the antitumor activity of flower. Subsequently, molecular docking was performed to determine whether the identified proteins are a target of the compounds of flower.

View Article and Find Full Text PDF

In order to enhance the "contact mechanism" governing the interaction of extracellular polymeric substances (EPS) with low-grade copper-bearing sulfide ore for the bioleaching of copper, moderately thermophilic Acidithiobacillus caldus was subjected to exogenous intervention with iron and sulfur. The enhancement of the contact mechanism was systematically investigated by evaluating the attached cells/EPS dynamics, intracellular adenosine triphosphate (ATP), cell functional groups, gene transcriptional level, and ore characteristics. Confocal laser scanning microscopy (CLSM) revealed that exogenous intervention with iron and sulfur led to the production of a denser EPS layer and faster adsorption of the attached cells to the ore based on differential fluorescence staining, which indicated enhancement of the "contact mechanism".

View Article and Find Full Text PDF

This study aimed to reveal the specific mechanism of extracellular polymeric substances (EPS) in the bioleaching of copper-bearing sulfide ore by moderately thermophilic bacterium Acidithiobacillus caldus. The bioleaching performance of blank control (BC), planktonic cell deficient (PD), attached cell deficient (AD), and EPS deficient (ED) systems were compared, to investigate the specific functions of "non-contact" and "contact" (including direct contact and, EPS-mediated contact) mechanisms. The detailed mechanics of bioleaching were studied using μx of cell growth, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

This study was designed to investigate the vasorelaxant effects and underlying mechanism of isocorynoxeine (ICN), one of the indole alkaloids from Uncaria hooks, on isolated mesenteric arteries in vitro. The myograph system was applied for isometric tension recording in the vascular rings. ICN relaxed both endothelium-intact and endothelium-denuded rat vascular rings precontracted with phenylephrine or KCl in a dose-dependent manner.

View Article and Find Full Text PDF

Guanxin Shutong capsule is a traditional Chinese medicine for the treatment of myocardial ischemia (MI). Previous studies have shown that the formula has four main active ingredients (FMAI), protocatechuic acid, cryptotanshinone, borneol, and eugenol. However, the mechanisms of action of these FMAI against MI injury are still not well known.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the effects of the Chinese medicinal formula Guanxin Shutong capsule (GXSTC) on endothelial cells stimulated by tumor necrosis factor-α (TNF-α), which are related to cardiovascular issues and inflammation.
  • GXSTC was shown to increase nitric oxide (NO) production in endothelial cells while reducing oxidative stress markers and protecting against endothelial dysfunction caused by TNF-α.
  • The results indicate that GXSTC enhances endothelial health through the NO pathway and exhibits antioxidant properties, potentially benefiting patients with cardiovascular diseases.
View Article and Find Full Text PDF

Guanxin Shutong capsule (GXSTC) is a Chinese medicinal formula that has been used clinically for the treatment of chest pain, depression, palpitation and cardiovascular diseases in China for almost 10 years. The aim of the present study was to investigate the protective mechanisms against oxidative stress and apoptosis that GXSTC exhibits in the hearts of rats with myocardial ischemia (MI). Infarct size and the levels of marker enzymes, including serum creatine kinase-isoenzyme (CK-MB), lactate dehydrogenase (LDH) and glutamate oxaloacetic transaminase (GOT), as well as the levels of nitric oxide (NO) and NO synthase (NOS) in the heart were measured by biochemical analysis assays.

View Article and Find Full Text PDF