Publications by authors named "Zhuangyuan Fan"

A longstanding line of research in urban studies explores how cities can be understood through their appearance. However, what remains unclear is to what extent urban dwellers' everyday life can be explained by the visual clues of the urban environment. In this paper, we address this question by applying a computer vision model to 27 million street view images across 80 counties in the United States.

View Article and Find Full Text PDF

Urban density, in the form of residents' and visitors' concentration, is long considered to foster diverse exchanges of interpersonal knowledge and skills, which are intrinsic to sustainable human settlements. However, with current urban studies primarily devoted to city- and district-level analyses, we cannot unveil the elemental connection between urban density and diversity. Here we use an anonymized and privacy-enhanced mobile dataset of 0.

View Article and Find Full Text PDF

In road safety research, bus crashes are particularly noteworthy because of the large number of bus passengers involved and the challenge that it puts to the road network (with the closure of multiple lanes or entire roads for hours) and the public health care system (with multiple injuries that need to be dispatched to public hospitals within a short time). The significance of improving bus safety is high in cities heavily relying on buses as a major means of public transport. The recent paradigm shifts of road design from primarily vehicle-oriented to people-oriented urge us to examine street and pedestrian behavioural factors more closely.

View Article and Find Full Text PDF

As the living tissue connecting urban places, streets play significant roles in driving city development, providing essential access, and promoting human interactions. Understanding street activities and how these activities vary across different streets is critical for designing both efficient and livable streets. However, current street classification frameworks primarily focus on either streets' functions in transportation networks or their adjacent land uses rather than actual activity patterns, resulting in coarse classifications.

View Article and Find Full Text PDF

Ongoing efforts among cities to reinvigorate streets have encouraged innovations in using smart data to understand pedestrian activities. Empowered by advanced algorithms and computation power, data from smartphone applications, GPS devices, video cameras, and other forms of sensors can help better understand and promote street life and pedestrian activities. Through adopting a pedestrian-oriented and place-based approach, this paper reviews the major environmental components, pedestrian behavior, and sources of smart data in advancing this field of computational urban science.

View Article and Find Full Text PDF