In this study, we used the polysaccharide ulvan from the green macroalgae Ulva fenestrata to prepare the hydrogel for chronic diabetic wound healing. A natural polysaccharide-based hydrogel matrix (UC-DPA-Ag hydrogel) was prepared using ulvan dialdehyde, chitosan, dopamine (DPA) and silver nanoparticles (Ag NPs). Human umbilical cord mesenchymal stem cell lyophilized powder (hUC-MSCs) was loaded into the hydrogel to develop a novel chronic diabetic wound healing material (UC-DPA-Ag@hUC-MSCs).
View Article and Find Full Text PDFBrilliant and dynamic colors in nature have stimulated the design of dyes and pigments with broad applications ranging from electronic displays to apparel. Inspired by the nanostructured pigment granules present in cephalopod chromatophore organs, we describe the design and fabrication of biohybrid colorants containing the cephalopod-specific pigment, xanthommatin (Xa), encased within silica-based nanostructures. We employed a biomimetic approach to encapsulate Xa with amine-terminated polyamidoamine (PAMAM) dendrimer templates, which helped stabilize the pigment during encapsulation.
View Article and Find Full Text PDFFast-dissolving drug delivery systems are essential to drug delivery owing to the enhanced drug solubility, controlled drug concentration, target and rapid drug delivery. In this study, we developed fast-dissolving drug delivery systems using honey and acetylsalicylic acid-embedded poly(vinyl alcohol) (PVA) nanofibers based on natural deep eutectic solvent (DES). The efficacy of our fast-dissolving drug delivery system was tested by incorporating honey and acetylsalicylic acid in the PVA nanofibers.
View Article and Find Full Text PDFCopolymerization methods are used to impart specific, desired functional properties (e.g. mechanical or bioactive) to a material for targeted applications in biomedicine, food and agriculture, consumer products, advanced manufacturing, and more.
View Article and Find Full Text PDFAnalysis of target analytes in food and environmental samples often required sophisticated instrumentation, which restrains the accessibility and portability of the analysis. Herein, we developed an instrument-free approach for rapid quantification of target analytes. The reported filtration-assisted approach enables image analysis of aggregates formed via interaction between analytes and silver nanoparticles (AgNPs).
View Article and Find Full Text PDFNanofibrous membranes which exhibit bacteriostatic functions are a good strategy to prevent microorganisms from adhering to the surface of biomaterials. Here, we report the synthesis of such a nanofibrous membrane which can be applied to biological coatings to reduce bacteriostatic functionality. Ascorbic acid was utilized to reduced chloroauric acid to gold nanoparticles (AuNPs).
View Article and Find Full Text PDFThe development of a method for multi-phase detection of antioxidants using surface-enhanced Raman spectroscopy (SERS) with a gold nanoparticle (AuNP)-coated fiber as a substrate is described. The AuNP-coated fiber was directly inserted into a multi-phase system containing model analytes of ascorbic acid, ascorbyl palmitate, and α-tocopherol, representing hydrophilic, amphiphilic, and lipophilic antioxidants, respectively. The AuNP-coated fiber enabled simultaneous detection of antioxidants present within the aqueous, interfacial, and organic phases of the multi-phase system.
View Article and Find Full Text PDFMany packaged goods undergo transition metal-catalyzed oxidative spoilage. Recently, a nonmigratory photocurable metal-chelating coating was developed as an innovative active packaging approach to control oxidation of foods. In the present study, we investigate the influence of competing ions and increasing viscosity on the iron-chelating capacity and antioxidant efficacy of this coating in a model complex food system.
View Article and Find Full Text PDFHerein, we report a simple coat/cure preparation of epoxide-functionalized surfaces using a photocurable copolymer technology. The photocurable copolymer, poly(glycidyl methacrylate- co-butyl acrylate- co-4-benzoylphenyl methacrylate) (GBB), was synthesized by single electron transfer-living radical polymerization (SET-LRP). The epoxide content in the copolymer was tuned by controlling the content of glycidyl methacrylate.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2018
Herein, we present a method to synthesize a photocurable metal chelating copolymer coating via emulsion polymerization to enable a facile coat/cure preparation of metal chelating materials. The copolymer coating was a poly(n-butyl acrylate) based polymer (79 mol %) synthesized by emulsion polymerization, with iminodiacetic acid (2 mol %) and benzophenone moieties (19 mol %) to impart metal chelating and photocrosslinking properties, respectively. The copolymer was applied onto polypropylene films and was photocured (365 nm, 225 mW/cm, 180 s) to produce metal chelating film.
View Article and Find Full Text PDFUnlabelled: Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication.
View Article and Find Full Text PDFThe introduction of metal-chelating ligands to the food-contact surface of packaging materials may enable the removal of synthetic chelators (e.g., ethylenediamine tetra-acetic acid (EDTA)) from food products.
View Article and Find Full Text PDF