The tumor microenvironment (TME), especially with its complicated metabolic characteristics, will dynamically affect the proliferation, migration, and drug response of tumor cells. Rapid metabolic analysis brings out a deeper understanding of the TME, while the susceptibility and environmental dependence of metabolites extremely hinder real-time metabolic profiling since the TME is easily disrupted. Here, we directly integrated paper spray ionization mass spectrometry with a paper-based three-dimensional (3D) tumor model, realizing the rapid capture of metabolic gradients.
View Article and Find Full Text PDFThe mechanisms whereby protein ions are released from nanodroplets at the liquid-gas interface have continued to be controversial since electrospray ionization (ESI) mass spectrometry was widely applied in biomolecular structure analysis in solution. Several viable pathways have been proposed and verified for single-domain proteins. However, the ESI mechanism of multi-domain proteins with more complicated and flexible structures remains unclear.
View Article and Find Full Text PDFThe highly variable response rates to immunotherapies underscore our limited knowledge about how tumors can manipulate immune cells. Here the membrane topology of natural killer (NK) cells from patients with liver cancer showed that intratumoral NK cells have fewer membrane protrusions compared with liver NK cells outside tumors and with peripheral NK cells. Dysregulation of these protrusions prevented intratumoral NK cells from recognizing tumor cells, from forming lytic immunological synapses and from killing tumor cells.
View Article and Find Full Text PDFDirect observation of metabolites in living cells by mass spectrometry offers a bright future for biological studies but also suffers a severe challenge to untargeted peak assignment to tentative metabolite candidates. In this study, we developed a method combining stable isotope tracing and induced electrospray mass spectrometry for living-cells metabolite measurement and identification. By using C-glucose and ammonium chloride-N as the sole carbon and nitrogen sources for cell culture, Escherichia coli synthesized metabolites with N and C elements.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Native mass spectrometry, which takes a high concentration of ammonium acetate (NHOAc) for ionization, coupled with tedious and solvent-consuming purification, which separates proteins from complicated environments, has shown great potential for proteins and their complexes. A high level of nonvolatile salts in the endogenous intracellular environment results in serious ion suppression and has been one of the bottlenecks for native mass spectrometry, especially for protein complexes. Herein, an integrated protocol utilizing the inner surface of a micropipette for rapid purification, desorption, and ionization of peptide-metal interaction at subfemtomole level in cell lysate was demonstrated for native mass spectrometry.
View Article and Find Full Text PDFRapid monitoring of real bacterial metabolic perturbations to antibiotics may be helpful to better understand the mechanisms of action and more targeted treatment. In this study, the real metabolic responses to antibiotic treatment in living bacteria were profiled rapidly by induced electrospray ionization mass spectrometry. Significant metabolic perturbations were profiled after antibiotic treatment compared with untreated bacteria.
View Article and Find Full Text PDFNative electrospray ionization was known to preserve the protein structure in solution, which overcame the uncontrollable acidification of droplets during transfer from solution into the gas phase in conventional electrospray ionization. However, detailed experimental studies on when and how could native electrospray ionization minimize structural perturbations remain quite unclear. Herein, we conducted molecular dynamics simulations to investigate the protein structure evolution during electrospray ionization.
View Article and Find Full Text PDFFor single living cell mass spectrometry measurement, sensitivity is of great significance due to the extremely complicated chemical components of the cytoplasm. Higher sensitivity is always highly desired, especially for chemicals with low concentrations or poor mass spectrometry responses. Here, a quaternary ammonium salt group-based charge tag was designed to enhance the analytical performance for cysteine within single cells using induced nanoelectrospray mass spectrometry.
View Article and Find Full Text PDFThe registration of the mass spectrometry imaging (MSI) data with mouse brain tissue slices from the atlases could perform automatic anatomical interpretation, and the comparison of MSI data in particular brain regions from different mice could be accelerated. However, the current registration of MSI data with mouse brain tissue slices is mainly focused on the coronal. Although the sagittal plane is able to provide more information about brain regions on a single histological slice than the coronal, it is difficult to directly register the complete sagittal brain slices of a mouse as a result of the more significant individualized differences and more positional shifts of brain regions.
View Article and Find Full Text PDFRapid analysis of metabolites in biofluids is of great importance for disease diagnosis or new-born disease screening. Herein, we introduce an agarose hydrogel conditioning method to enhance the performance of paper spray ionization mass spectrometry. With facile and fast hydrogel conditioning, the signal intensity of therapeutic drugs spiked in urine was 5 to 15 fold higher than that in direct paper spray ionization mass spectrometry analysis.
View Article and Find Full Text PDFRuthenium-arene complexes are a unique class of organometallic compounds that have been shown to have prominent therapeutic potencies. Here, we have investigated the interactions of Ru-cymene complexes with a zinc-finger protein NCp7, aiming to understand the effects of various ligands on the reaction. Five different binding modes were observed on selected Ru-complexes.
View Article and Find Full Text PDFRationale: Previous studies found that charge state could affect both specific and nonspecific binding of protein-metal ion interactions in nanoelectrospray ionization mass spectrometry (nESI-MS). However, the two kinds of interactions have been studied individually in spite of the problem that they often coexist in the same system. Thus, it is necessary to study the effects of charge state on specific and nonspecific protein-metal ion interactions in one system to reveal more accurate binding state.
View Article and Find Full Text PDFImaging of cholesterol and other metabolites simultaneously by ambient mass spectrometry will greatly benefit biological studies, however, it still remains challenging. Herein, by adding acid into the desorption electrospray ionization (DESI) spray solvent, we achieved simultaneous mass spectrometry imaging of cholesterol and other metabolites directly from mouse brain sections. The introduction of acid increased the signal intensity of cholesterol in mouse brain tissues by approximately 21-fold.
View Article and Find Full Text PDFA modified version of desorption electrospray ionization mass spectrometry was developed for (i) better utilization of analyte ions and (ii) larger sampling area via synchronization the pulsed nebulizer gas with ion injection. To synchronize the sheath gas, gas flow was paused for 50 ms within each cycle, leading to solvent accumulation at the end of emitter tip. That solvent accumulation enlarged the desorption areas.
View Article and Find Full Text PDFNucleocapsid protein 7 (NCp7) is an attractive target for anti-HIV drug development. Here we found that ruthenium complexes are reactive to NCp7 and various Ru-agents exhibit significantly different reactivity. Interestingly, the zinc-finger domains of NCp7 also demonstrate different affinity to Ru-complexes; the C-terminal domain is much more reactive than the N-terminal domain.
View Article and Find Full Text PDFSequential unfolding of monomeric proteins is important for the global understanding of local conformational elements (e.g., secondary structures and domain connections) within those protein assemblies.
View Article and Find Full Text PDF