Publications by authors named "Zhuang-Zhuang Niu"

Article Synopsis
  • Copper is an effective catalyst for converting carbon dioxide into useful hydrocarbons, but its stability is undermined by carbon deposition, which can block active sites on the electrode.
  • The presence of carbon species, particularly during methane production, is linked to increased carbon deposition that deteriorates catalytic performance.
  • Strategies to combat carbon buildup include enhancing the electrode's roughness and raising the electrolyte's pH, providing insights for developing more stable catalysts for CO reduction.
View Article and Find Full Text PDF

Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute.

View Article and Find Full Text PDF

Reduction of carbon dioxide (CO) by renewable electricity to produce multicarbon chemicals, such as ethylene (CH), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier.

View Article and Find Full Text PDF

Electrochemical synthesis of valuable chemicals and feedstocks through carbon dioxide (CO) reduction in acidic electrolytes can surmount the considerable CO loss in alkaline and neutral conditions. However, achieving high productivity, while operating steadily in acidic electrolytes, remains a big challenge owing to the severe competing hydrogen evolution reaction. Here, we show that vertically grown bismuth nanosheets on a gas-diffusion layer can create numerous cavities as electrolyte reservoirs, which confine in situ-generated hydroxide and potassium ions and limit inward proton diffusion, producing locally alkaline environments.

View Article and Find Full Text PDF

Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C) chemicals, posing a grand challenge to achieve a single C product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu(OH)NO, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption.

View Article and Find Full Text PDF

Converting hydrogen chemical energy into electrical energy by fuel cells offers high efficiencies and environmental advantages, but ultrapure hydrogen (over 99.97%) is required; otherwise, the electrode catalysts, typically platinum on carbon (Pt/C), will be poisoned by impurity gases such as ammonia (NH). Here we demonstrate remarkable NH resistivity over a nickel-molybdenum alloy (MoNi) modulated by chromium (Cr) dopants.

View Article and Find Full Text PDF
Article Synopsis
  • A dual-phase copper-based catalyst with abundant Cu(I) sites increases chloride-specific adsorption, boosting the local carbon monoxide (CO) coverage for better CO-CO coupling kinetics during electrocatalytic carbon dioxide reduction (COR).
  • This catalyst design achieves high multicarbon production efficiency in a neutral potassium chloride electrolyte, demonstrating a Faradaic efficiency of 81% and a current density of 322 mA/cm².
  • The catalyst remains stable after 45 hours of operation, making it viable for commercial carbon dioxide electrolysis applications.
View Article and Find Full Text PDF
Article Synopsis
  • - Recent advancements in electrosynthesis using CO as a feedstock have improved the production of multicarbon chemicals but face challenges, particularly in forming carbon-carbon (C-C) bonds efficiently in neutral media.
  • - The study introduces oxide-derived copper crystals with specific facets that achieve a high Faradaic efficiency of 74.9% when converting CO to multicarbon products at a current density of 300 mA cm in a mildly alkaline solution.
  • - Experimental and computational analyses reveal that the Cu(100)/Cu(111) interfaces significantly enhance CO adsorption and reduce the energy barriers for C-C coupling, maintaining stability over 50 hours of continuous operation without degradation.
View Article and Find Full Text PDF

Recently developed solid-state catalysts can mediate carbon dioxide (CO) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability.

View Article and Find Full Text PDF

Electrosynthesis of hydrogen peroxide (H O ) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth-abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cobalt diselenide (CoSe ), which creates high-performance catalyst to selectively drive two-electron oxygen reduction toward H O in an acidic electrolyte. The enhancement of the interlayer coupling between CoSe atomic layers offers a favorable surface electronic structure that weakens the critical *OOH adsorption, promoting the energetics for H O production.

View Article and Find Full Text PDF

Operating fuel cells in alkaline environments permits the use of platinum-group-metal-free (PGM-free) catalysts and inexpensive bipolar plates, leading to significant cost reduction. Of the PGM-free catalysts explored, however, only a few nickel-based materials are active for catalyzing the hydrogen oxidation reaction (HOR) in alkali; moreover, these catalysts deactivate rapidly at high anode potentials owing to nickel hydroxide formation. Here we describe that a nickel-tungsten-copper (NiWCu) ternary alloy showing HOR activity rivals Pt/C benchmark in alkaline electrolyte.

View Article and Find Full Text PDF
Article Synopsis
  • Copper is a promising catalyst for converting carbon dioxide into valuable multi-carbon compounds, but its stability is an issue, especially under high current densities due to electrolyte flooding from the gas diffusion layer.
  • Researchers developed a bioinspired copper catalyst that mimics the structure of hydrophobic leaves, enhancing the hydrophobic properties of the gas diffusion layer and improving the performance of the CO2 reduction process.
  • This innovation resulted in a high production rate of 255 mA cm² with a faradaic efficiency of 64%, and the catalyst maintained strong operational stability over 45 hours, outperforming traditional copper catalysts.
View Article and Find Full Text PDF

Although the Turing structures, or stationary reaction-diffusion patterns, have received increasing attention in biology and chemistry, making such unusual patterns on inorganic solids is fundamentally challenging. We report a simple cation exchange approach to produce Turing-type Ag Se on CoSe nanobelts relied on diffusion-driven instability. The resultant Turing-type Ag Se-CoSe material is highly effective to catalyze the oxygen evolution reaction (OER) in alkaline electrolytes with an 84.

View Article and Find Full Text PDF

Selective and efficient catalytic conversion of carbon dioxide (CO) into value-added fuels and feedstocks provides an ideal avenue to high-density renewable energy storage. An impediment to enabling deep CO reduction to oxygenates and hydrocarbons (e.g.

View Article and Find Full Text PDF

A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO to CO or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids).

View Article and Find Full Text PDF

Many platinum group metal-free inorganic catalysts have demonstrated high intrinsic activity for diverse important electrode reactions, but their practical use often suffers from undesirable structural degradation and hence poor stability, especially in acidic media. We report here an alkali-heating synthesis to achieve phase-mixed cobalt diselenide material with nearly homogeneous distribution of cubic and orthorhombic phases. Using water electroreduction as a model reaction, we observe that the phase-mixed cobalt diselenide reaches the current density of 10 milliamperes per square centimeter at overpotential of mere 124 millivolts in acidic electrolyte.

View Article and Find Full Text PDF