Publications by authors named "Zhu Yuzhang"

Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel.

View Article and Find Full Text PDF

Quercetin is a natural flavonoid with antioxidant, anti-inflammatory, and antibacterial properties. This work aimed to formulate quercetin-cyclodextrin microcapsules (QT-β-CD) while examining their photodynamic antibacterial effects and underlying mechanisms in detail. Characterization of the QT-β-CD was conducted using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF
Article Synopsis
  • Scientists made a special film using gallic acid, chitosan, and cellulose to protect food from bad bacteria and keep it fresh.
  • The film is really strong, can block harmful UV light, and helps stop water from getting through it.
  • When used for packaging oysters, this film kept them fresh longer and improved their safety by fighting off germs.
View Article and Find Full Text PDF

Achieving high selectivity of Li and Mg is of paramount importance for effective lithium extraction from brines, and nanofiltration (NF) membrane plays a critical role in this process. The key to achieving high selectivity lies in the on-demand design of NF membrane pores in accordance with the size difference between Li and Mg ions, but this poses a huge challenge for traditional NF membranes and difficult to be realized. In this work, we report the fabrication of polyamide (PA) NF membranes with ultra-high Li/Mg selectivity by modifying the interfacial polymerization (IP) process between piperazine (PIP) and trimesoyl chloride (TMC) with an oil-soluble surfactant that forms a monolayer at oil/water interface, referred to as OSARIP.

View Article and Find Full Text PDF

Current hydrophilic modification strategies improve the antifouling ability of membranes but fail to completely eliminate the fouling of emulsified oil droplets with a wide size distribution. Constructing membranes with superior anti-oil-fouling ability to resist various oil droplets especially at high permeation fluxes is challenging. Here, the fabrication of a zero-oil-fouling membrane by grafting considerably high coverage of zwitterionic polymer and building defect-free hydration defense barrier on the surface is reported.

View Article and Find Full Text PDF

In mammals, the production of mature oocytes necessitates rigorous regulation of the discontinuous meiotic cell-cycle progression at both the transcriptional and post-transcriptional levels. However, the factors underlying this sophisticated but explicit process remain largely unclear. Here we characterize the function of N-acetyltransferase 10 (Nat10), a writer for N4-acetylcytidine (ac4C) on RNA molecules, in mouse oocyte development.

View Article and Find Full Text PDF

Polymer membranes have been used extensively for Angstrom-scale separation of solutes and molecules. However, the pore size of most polymer membranes has been considered an intrinsic membrane property that cannot be adjusted in operation by applied stimuli. In this work, we show that the pore size of an electrically conductive polyamide membrane can be modulated by an applied voltage in the presence of electrolyte via a mechanism called electrically induced osmotic swelling.

View Article and Find Full Text PDF

Surface coating is essential and critical to endow fiber materials with various functions for broad applications. However, it is still a great challenge to achieve a fast, fully covered, and robust surface coating on multiple fibers. In this work, a nanoscale surface coating with superior stability was rapidly and integrally formed on various fiber materials (such as Nylon mesh, nonwoven fabrics, and stainless-steel mesh) by highly reactive interfacial polymerization (IP) between polyethylenimine (PEI) and trimesoyl chloride (TMC).

View Article and Find Full Text PDF

Background And Purpose: Estrogen-dependent endometrial cancer mainly occurs in younger pre-menopausal and post-menopausal women and threatens their health. Recently, microRNAs (miRNAs) have been considered as novel targets in endometrial cancer treatment. Therefore, we aimed to explore the effect of miRNA (miR)-196a-5p in estrogen-dependent endometrial cancer.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a common malignancy worldwide. Human immune deficiency virus type 1 enhancer-binding protein 3 (HIVEP3) was verified to play a vital role in types of cancers. However, the functional role of HIVEP3 in AML was rarely reported.

View Article and Find Full Text PDF

Lithium (Li) extraction from brines is a major barrier to the sustainable development of batteries and alloys; however, current separation technology suffers from a trade-off between ion selectivity and permeability. Herein, a crown ether mechanically interlocked 3D porous organic framework (Crown-POF) was prepared as the porous filler of thin-film nanocomposite membranes. Crown-POF with penta-coordinated (four O atoms and one N atom) adsorption sites enables a special recognition for Li ion.

View Article and Find Full Text PDF

Background: Platelet-to-lymphocyte ratio (PLR) is reported to be related to the outcome of intensive care unit (ICU) patients. However, little is known about their associations with prognosis in newborn patients in neonatal ICU (NICU). The aim of the present study was to investigate the prognostic significance of the PLR for newborn patients in the NICU.

View Article and Find Full Text PDF

To claim the features of nontumor tissue in gastric cancer patients, especially in those who have undergone gastrectomy, and to identify the molecular subtypes, we collected the immunogenic and hallmark gene sets from gene set enrichment analysis. The activity changes of these gene sets between tumor (375) and nontumor (32) tissues acquired from the Cancer Genome Atlas (TCGA-STAD) were calculated, and the novel molecular subtypes were delineated. Subsequently, prognostic gene sets were determined using least absolute shrinkage and selection operator (lasso) regression prognostic method.

View Article and Find Full Text PDF

In this study, we report the emergence of two-dimensional (2D) branching fractal structures (BFS) in the nanoconfinement between the active and the support layer of a thin-film-composite polyamide (TFC-PA) nanofiltration membrane. These BFS are crystal dendrites of NaCl formed when salts are either added to the piperazine solution during the interfacial polymerization process or introduced to the nascently formed TFC-PA membrane before drying. The NaCl dosing concentration and the curing temperature have an impact on the size of the BFS but not on the fractal dimension (∼1.

View Article and Find Full Text PDF

It is of great importance and practical value to develop a facile and operable surface treatment method of materials with excellent antipollution and antiadhesion property, but still a huge challenge. In this work, a series of pseudo-zwitterions are prepared from electrostatic assembly of cationic polyethyleneimine and anionic phosphonic clusters. These pseudo-zwitterionic assemblies provide a strong hydration through electrostatic interaction with water and in turn create a barrier against oil foulants, leading to a nearly zero crude oil adhesion force.

View Article and Find Full Text PDF

Thyroid cancer (TC) is the most common endocrine malignant disease with a rising morbidity year by year. Accumulating studies have shown that microRNAs (miRNAs) play a regulatory role in the progression of various tumors, but the molecular regulatory mechanism of miR-196a-2 in TC is still unknown. qRT-PCR was employed to measure the expression of miR-196a-2 and NRXN1 mRNA in TC cells, while western blot was used to detect the protein expression of NRXN1.

View Article and Find Full Text PDF

Objectives: Breast cancer is the most common malignant tumor among females, and miRNAs have been reported to play an important regulatory role in breast cancer progression. This study aimed to explore the function and underlying molecular mechanism of miR-301b-3p in breast cancer.

Methods: Differential analysis and survival analysis were performed based on the data accessed from the TCGA-BRCA dataset for identification of the target miRNA.

View Article and Find Full Text PDF

Covalent organic framework (COF)-based membranes are burgeoning candidates for separation technologies owing to their well-ordered channel structures. The exponential interest in the stability of the COF membrane on exposure to harsh organic solvents is directed to develop a composite membrane for dye separations in polar aprotic solvents. Here, we reported a nanocomposite membrane composing of a single-walled carbon nanotube (SWCNT)/COF (an imine-based COF) hybrid on a commercial polytetrafluoroethylene (PTFE) substrate, with a thickness of ∼58 nm prepared in a diffusion cell.

View Article and Find Full Text PDF

The study of traditional Chinese medicines (TCMs) is receiving increasing attention worldwide because of their contribution to human health. Developing an effective and sustainable method for screening TCMs is highly desired to accelerate the modernization of TCMs. In this work, we report a neutrally charged membrane made of a positively charged polyelectrolyte electrostatically assembled on a negatively charged superhydrophilic nanoporous membrane.

View Article and Find Full Text PDF

Despite the commercial success of thin film composite polyamide membranes, further improvements to the water permeation of polyamide membranes without degradation in product water quality remain a great challenge. Herein, we report the fabrication of an interfacially polymerized polyamide nanofiltration membrane with a novel 3D honeycomb-like spatial structure, which is formed from a tobacco mosaic virus (TMV) porous protein nanosheet-coated microfiltration membrane support. TMV nanosheets with uniform pores and appropriate hydrophilicity deposited inside the support membrane pores facilitate the construction of a localized water-oil reaction interface with evenly distributed monomers and guide the formation of a defect-free polyamide layer with a spatial structure that copies the geometry of the membrane cavities.

View Article and Find Full Text PDF

Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP).

View Article and Find Full Text PDF

Membranes with high permeance and high rejection for di- and multivalent cation removal are highly desired for efficient brackish water and industrial water treatment. In this work, we report a facile strategy for constructing ultrathin nanofiltration (NF) membranes by in situ cross-linking of amine which is confined in a network film. The network made of single-walled carbon nanotubes (SWCNTs) serves as a framework for poly(ethylene imine) (PEI) to attach and stay, facilitating the formation of a polyamine (PA) layer with high quality and controlled thickness.

View Article and Find Full Text PDF

Highly sensitive responsiveness is vital for stimuli-responsive membranes. However, it is a great challenge to fabricate stimuli-responsive membranes with ultrahigh gating ratio (the ratio of the salt solution permeating flux to the pure water permeating flux) and high response speed simultaneously. In this work, a salt-responsive membrane with an ultrahigh gating ratio is fabricated via a facile strategy by grafting zwitterionic nanohydrogels onto a poly(acrylic acid)-grafting-poly(vinylidene fluoride) (PAA-g-PVDF) microporous membrane.

View Article and Find Full Text PDF

Recently, ultrathin polyamide nanofiltration membranes fabricated on nanomaterial-based supports have overcome the limitations of conventional supports and show greatly improved separation performance. However, the feasibility of the nanomaterial-based supports for large-scale fabrication of the ultrathin polyamide membrane is still unclear. Herein, we report a controllable and saleable fabrication technique for a single-walled carbon nanotube (SWCNT) network support via brush painting.

View Article and Find Full Text PDF