Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS.
View Article and Find Full Text PDFStatus epilepticus is a severe neurological emergency that often leads to long-term neuronal damage and functional impairment. Gastrodin is a compound widely used in traditional Chinese medicine with potential neuroprotective effects. This study aims to investigate the effects of GAS on neuroinflammation and injury caused by LiCl/pilocarpine-induced SE in young rats.
View Article and Find Full Text PDFKidney injury is a major medical burden and one of the most common reasons for hospitalization and poor life quality. Kidney injury can include acute kidney injury, chronic kidney disease, and immune-mediated kidney diseases most of which have no definitive therapy. The spleen is a secondary lymphoid organ in the reticuloendothelial system that plays an important role in protecting the body from various diseases.
View Article and Find Full Text PDFRenal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, = 3), relatively healthy donor kidneys ( = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, = 3).
View Article and Find Full Text PDFClin Toxicol (Phila)
September 2023
: Diquat poisoning leads to kidney injury, hepatotoxicity, rhabdomyolysis, gastrointestinal hemorrhage, and respiratory failure. Diquat has high mortality and no specific antidote. The pathology of acute kidney injury caused by diquat poisoning has been mainly investigated in animal studies and autopsies, and typically shows renal tubular necrosis.
View Article and Find Full Text PDFStem Cell Res Ther
May 2023
Background: Obesity dysregulates key biological processes underlying the functional homeostasis, fate decisions, and reparative potential of mesenchymal stem/stromal cells (MSCs). Mechanisms directing obesity-induced phenotypic alterations in MSCs remain unclear, but emerging drivers include dynamic modification of epigenetic marks, like 5-hydroxymethylcytosine (5hmC). We hypothesized that obesity and cardiovascular risk factors induce functionally relevant, locus-specific changes in 5hmC of swine adipose-derived MSCs and evaluated their reversibility using an epigenetic modulator, vitamin-C.
View Article and Find Full Text PDFAutologous mesenchymal stem/stromal cells (MSCs) have demonstrated important therapeutic effects in several diseases. Cardiovascular risk factors may impair MSC mitochondrial structure and function, but the underlying mechanisms remain unknown. We hypothesized that metabolic syndrome (MetS) induces epigenetic alterations in mitochondria-related genes in swine MSCs.
View Article and Find Full Text PDFAtherosclerotic renovascular disease (RVD) leads to hypertension, chronic kidney disease (CKD), and heart disease. Intrarenal delivery of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) attenuate renal injury and suppress release of inflammatory cytokines in porcine RVD. We hypothesized that this strategy would also be useful for cardioprotection.
View Article and Find Full Text PDFAtherosclerotic renal artery stenosis (ARAS) is associated with irreversible parenchymal renal disease and regenerative stem cell therapies may improve renal outcomes. Hypoxia preconditioning (HPC) may improve the regenerative functions of adipose tissue-derived mesenchymal stem cells (AMSC) by affecting DNA 5-hydroxymethylcytosine (5hmC) marks in angiogenic genes. Here, we investigated using a porcine ARAS model, whether growth of ARAS AMSCs in hypoxia (Hx) versus normoxia (Nx) would enhance renal tissue repair, and comprehensively analyze how HPC modifies DNA hydroxymethylation compared to untreated ARAS and healthy/normal pigs (n=5 each).
View Article and Find Full Text PDFAutophagy eliminates excessive nutrients and maintains homeostasis. Obesity and metabolic syndrome (MetS) dysregulate autophagy, possibly partly due to mitochondria injury and inflammation. Elamipretide (ELAM) improves mitochondrial function.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2022
Pericytes are considered reparative mesenchymal stem cell-like cells, but their ability to ameliorate chronic ischemic kidney injury is unknown. We hypothesized that pericytes would exhibit renoprotective effects in murine renal artery stenosis (RAS). Porcine kidney-derived pericytes (5 × 10) or vehicle were injected into the carotid artery 2 wk after the induction of unilateral RAS in mice.
View Article and Find Full Text PDFBackground: Scattered tubular-like cells (STCs) are dedifferentiated renal tubular cells endowed with progenitor-like characteristics to repair injured parenchymal cells. STCs may be damaged and rendered ineffective by renal artery stenosis (RAS), but the underlying processes remain unclear. We hypothesized that RAS alters the epigenetic landscape on DNA and the ensuing gene transcriptional profile of swine STCs.
View Article and Find Full Text PDFBackground: Renal artery stenosis (RAS) is an important cause of chronic kidney disease and secondary hypertension. In animal models, renal ischemia leads to downregulation of growth factor expression and loss of intrarenal microcirculation. However, little is known about the sequelae of large-vessel occlusive disease on the microcirculation within human kidneys.
View Article and Find Full Text PDFChronic ischemia triggers senescence in renal tubules and at least partly mediates kidney dysfunction and damage through a p16 -related mechanism. We previously showed that mesenchymal stromal/stem cells (MSCs) delivered systemically do not effectively decrease cellular senescence in stenotic murine kidneys. We hypothesized that selective MSC targeting to injured kidneys using an anti-KIM1 antibody (KIM-MSC) coating would enhance their ability to abrogate cellular senescence in murine renal artery stenosis (RAS).
View Article and Find Full Text PDFExtracellular vesicles are important vectors for cell-cell communication and show potential value for diagnosis and treatment of kidney diseases. The pathologic diagnosis of kidney diseases relies on kidney biopsy, whereas collection of extracellular vesicles from urine or circulating blood may constitute a less invasive diagnostic tool. In particular, urinary extracellular vesicles released mainly from resident kidney cells might provide an alternative tool for detection of kidney injury.
View Article and Find Full Text PDFIntroduction: Obesity is a health burden that impairs cellular processes. Mesenchymal stem/stromal cells (MSCs) are endowed with reparative properties and can ameliorate renal injury. Obesity impairs human MSC function in-vitro, but its effect on their in-vivo reparative potency remains unknown.
View Article and Find Full Text PDFImmune-modulatory properties of adipose tissue-derived mesenchymal stem/stromal cells (MSCs) might be susceptible to metabolic disturbances. We hypothesized that the immune-modulatory function of MSCs might be blunted in obese human subjects. MSCs were collected from abdominal subcutaneous fat of obese and lean subjects during bariatric or kidney donation surgeries, respectively.
View Article and Find Full Text PDFPercutaneous transluminal renal angioplasty (PTRA) may improve cardiac function in renovascular hypertension (RVH), but its effect on the biological mechanisms implicated in cardiac damage remains unknown. We hypothesized that restoration of kidney function by PTRA ameliorates myocardial mitochondrial damage and preserves cardiac function in pigs with metabolic syndrome (MetS) and RVH. Pigs were studied after 16 weeks of MetS+RVH, MetS+RVH treated 4 weeks earlier with PTRA, and Lean and MetS Sham controls (n=6 each).
View Article and Find Full Text PDFBackground: Peripheral vascular diseases may induce chronic ischemia and cellular injury distal to the arterial obstruction. Cellular senescence involves proliferation arrest in response to stress, which can damage neighboring cells. Renal artery stenosis (RAS) induces stenotic-kidney dysfunction and injury, but whether these arise from cellular senescenceand their temporal pattern remain unknown.
View Article and Find Full Text PDFObesity is a chronic disease that interferes with normal repair processes, including adipose mesenchymal stem/stromal cells (ASCs) function. ASCs produce extracellular vesicles (EVs) that activate a repair program in recipient cells partly via their micro-RNA (miRNA) cargo. We hypothesized that obesity alters the miRNA expression profile of human ASC-derived EVs, limiting their capacity to repair injured cells.
View Article and Find Full Text PDFBackground: Percutaneous transluminal renal angioplasty (PTRA) confers clinical and mortality benefits in select 'high-risk' patients with renovascular disease (RVD). Intra-renal-delivered extracellular vesicles (EVs) released from mesenchymal stem/stromal cells (MSCs) protect the kidney in experimental RVD, but have not been compared side-by-side to clinically applied interventions, such as PTRA. We hypothesized that MSC-derived EVs can comparably protect the post-stenotic kidney via direct tissue effects.
View Article and Find Full Text PDF