Publications by authors named "Zhu Ming-Qiang"

Hexaarylbiimidazole (HABI) molecules have awakened a broad interest in photo-processing, super-resolution imaging, photoinduced self-healing materials, and photomechanical hydrogels due to their excellent photosensitivity and photo-induced cleavage properties. In this work, a novel photoswitchable branched polyurethanes (BPU), which are synthesized by copolymerizing HABI with glycerol, isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), is designed. 7-Diethylamino-4-methylcoumarin (DMCO) is introduced as a radical quencher, which can not only avoid the hydroxyl interfering from conventional radical scavengers during the polymerization process but also promote efficient quenching of TPIR radicals.

View Article and Find Full Text PDF

The efficient extraction and purification of active components from Eucommia ulmoides Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.

View Article and Find Full Text PDF

Background: Familial hypercholesterolemia (FH) is an inherited disorder mainly marked by increased low-density lipoprotein cholesterol (LDL-C) concentrations and a heightened risk of early-onset arteriosclerotic cardiovascular disease (ASCVD). This study seeks to characterize the genetic spectrum and genotype‒phenotype correlations of FH in Chinese pediatric individuals.

Methods: Data were gathered from individuals diagnosed with FH either clinically or genetically at multiple hospitals across mainland China from January 2016 to June 2024.

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a popular conduction polymer and widely used in organic electronics, bioelectronics and printed electronics. It is believed that PEDOT:PSS has a core-shell colloidal structure dispersed in the formulation. However, the size and surface functional groups of the PEDOT:PSS dispersion and films remain to be visualized.

View Article and Find Full Text PDF

Amyloid-β (Aβ) species (Aβ fibrils and Aβ plaques), as one of the typical pathological markers of Alzheimer's disease (AD), plays a crucial role in AD diagnosis. Currently, some near-infrared I (NIR I) Aβ probes have been reported in AD diagnosis. However, they still face challenges such as strong background interference and the lack of effective probe design.

View Article and Find Full Text PDF

Photochromic diarylethene has attracted broad research interest in optical applications owing to its excellent fatigue resistance and unique bistability. Photoswitchable fluorescent diarylethene become a powerful molecular tool for fluorescence imaging recently. Herein, the recent progress on photoswitchable fluorescent diarylethenes in bioimaging is reviewed.

View Article and Find Full Text PDF

Fluorescence sensing of latent fingerprints (LFPs) has gained extensive attention due to its high sensitivity, non-destructive testing, low biotoxicity, ease of operation, and the potential for in situ visualization. However, the realization of in situ visualization of LFPs especially with green emission and rapid speed is still a challenge. Herein, we synthesized an amphibious green-emission AIE-gen TPE-NI-AOH (PLQY = 62%) for instant in situ LFP detecting, which integrates the excellent fluorescence properties of naphthalimide (NI) with a hydrophilic head and the AIE character as well as the donating property of tetraphenylethene (TPE).

View Article and Find Full Text PDF

Eucommia ulmoides rubber (EUR) is a high-quality natural rubber resource, which can be extracted from different organs of the Eucommia ulmoides tree. In this study, EUR was isolated from the leaves, barks, and pericarps, and the structural characteristics and physicochemical properties of EUR were systematically determined. The accumulation and distribution of EUR in different tissues were assessed through in situ observations combined with cellular and subcellular scales.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to improve detection and management of sitosterolemia in Chinese children by analyzing their physical traits and genetic factors.
  • Out of 26 diagnosed children, the most common symptoms were xanthomas (73.1%), joint pain (26.9%), and stunted growth (15.4%), with significant genetic findings linking ABCG5 and ABCG8 variants to the condition.
  • Results showed that dietary changes and ezetimibe treatment notably reduced cholesterol levels, emphasizing the importance of genetic testing and dietary management for effective sitosterolemia control.
View Article and Find Full Text PDF

Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology.

View Article and Find Full Text PDF

Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Nitroxinil (NIT) is a veterinary medicine for cattle and sheep that can pose risks to human health through the food chain.
  • Researchers developed a new ratiometric fluorescent probe for NIT that uses an albumin host and an Aggregation-induced emission (AIE) guest, which responds quickly (in 10 seconds) and is highly sensitive.
  • This probe allows for the detection of NIT in real food samples, enables on-site analysis with a paper test strip, and facilitates fluorescence imaging in living cells.
View Article and Find Full Text PDF
Article Synopsis
  • * Aggregation-induced emission (AIE) is a promising new concept in luminescence, offering benefits like high brightness, safety for biological use, and stability, making it suitable for medical applications.
  • * This review summarizes the use of AIE luminogens in imaging biological structures, diagnosing diseases, and monitoring specific substances, while also addressing important issues and future research directions to encourage interdisciplinary collaboration.
View Article and Find Full Text PDF

Adhesive hydrogels have emerged as promising candidates to solve life-threatening infectious skin injuries. However, the inadequate mechanical characteristics and biological adherence limit the traditional wound dressing unable to adapt to high-frequency movement and real-time monitoring of wound healing, calling for the development of bioadhesive materials guided wound healing. In this work, a multifunctional bioadhesive hydrogel with double colorimetric-integrated of polyethylene glycol (PVA)-dextran (Dex)-borax-bromothymol blue (BTB)-fluorescein thiocyanate (FITC) and functionalization by tungsten disulfide-catechol nanozyme (CL/WS) was created.

View Article and Find Full Text PDF

Photocatalytic sterilization is an eco-friendly strategy to utilize solar energy for treating water contaminated with resistant bacteria. Here, we propose interface engineering to induce an internal electric field (IEF) in leaf-like TiCTx/TiO based on the work function (Φ) theory, which enhances photocatalytic sterilization performance by steering interface charge kinetics. Density functional theory (DFT) calculations and in situ irradiation X-ray photoelectron spectroscopy (ISI-XPS) results show that photogenerated charge carriers can be directionally separated by the IEF.

View Article and Find Full Text PDF

The grave threat posed by food hazards to food security and human health has increased the urgency of rapid and sensitive detection. Enzyme-mimic immune detection, particularly nanozyme-activated food immunosensors (NAFI), shows distinct specificity and catalytic properties, advancing food safety supervision. However, knowledge of the fundamental principles and functionalities of NAFI is still limited.

View Article and Find Full Text PDF

The efficient development of latent fingerprint (LFP) is attractively important for criminal investigation. The low-cost and high-contrast developer is still a challenge. In this study, we designed and synthesized dicyanomethylene-4H-pyran (DCM) derivatives PZ-DCM and Boc-PZ-DCM by introducing of large steric hindrance group Boc, the solid-state fluorescence of DCM derivatives was greatly enhanced.

View Article and Find Full Text PDF

The nanozyme-based colorimetric strategy for heavy metal detection has broad application prospects nowadays. However, the inefficient recognition capabilities of nanozyme sensors for targets hinder its further application. Herein, the authors synthesize bare nickel selenide (NiSe) via a one-step hydrothermal reaction, in which the Se element possesses a strong binding ability with mercury (Hg).

View Article and Find Full Text PDF

Photocatalytic disinfection is a promising way to combat bacterial pollution in the water environment. Inefficient use of visible light and undirected diffusion of reactive oxygen species (ROS) reduce photocatalytic disinfection efficiency. Herein, inspired by the concentrating effect of convex lens, photocatalysts with particular "nano-magnifying glass effect" (TCNMgNOs) were designed by embedding magnesium oxide with "converge effect" into the tailored hierarchical triple-shell porous g-CN with "one light multi-purpose effect" to boost the visible-light utilization.

View Article and Find Full Text PDF
Article Synopsis
  • Dicyanomethylene-4H-pyran (DCM) derivatives are fluorescent compounds known for their impressive light stability and ability to emit near-infrared (NIR) light due to their unique photophysical properties, primarily relying on intramolecular charge transfer (ICT).
  • A variety of NIR DCM probes have been developed to specifically detect ions, reactive oxygen species (ROS), and biological macromolecules within cells, showcasing their potential in biosensing and biological imaging.
  • This minireview aims to provide a comprehensive summary of recent advancements in ICT-based NIR DCM probes, highlighting their applications and paving the way for innovative probe construction in the future.
View Article and Find Full Text PDF

COVID-19 threatens human life because of the super destructiveness produced from its coronal morphology and strong transmembrane infection based on spike glycoprotein. Inspired by the coronal morphology of COVID-19 and its means of infecting, we designed an "artificial virus" with coronal morphology based on the concept of "defeating superbacteria with superviruses" by self-assembling a transacting activator of transduction peptide with triple-shell porous graphitic carbon nitride (g-CN) embedded with cobalt nanoparticles to forcefully infect methicillin-resistant (MRSA). The results confirmed that this "artificial virus" had unique properties of crossing the bacterial cell membrane barrier, heating the internal bacterial microenvironment and triggering ROS outbreak, based on its coronal morphology, membrane penetration, temperature-rising and heat insulation, oxidase-like activity and excellent visible-light harvesting properties.

View Article and Find Full Text PDF

The alkali-soluble hemicelluloses extracted with 10% KOH solution from corn bran were further isolated with different concentrations of aqueous ethanol solutions. Herein 92.2% of the original hemicelluloses can be obtained and the cellulase enzymatic hydrolysis rate of the alkali treated corn bran can reach to 97.

View Article and Find Full Text PDF

To achieve an effective deconstruction for preparation of xylooligosaccharides (XOS) and lignin nanoparticles (LNPs) from Eucommia ulmoides, a synergistic pretreatment was successfully developed. Herein, the hemicelluloses were preferentially dissociated in acetic acid-catalyzed hydrothermal pretreatment (HTP) for preparation of XOS, and the hydrothermally-pretreated substrate was then subjected to deep eutectic solvents (DES) delignification for fabrication of LNPs. Results showed that the optimal yield (33.

View Article and Find Full Text PDF

In this paper, the two-step activation Eucommia wood tar-based activated carbon (ETAC), cellulose nanofibers (CNF) and reduced graphene oxide (rGO) were assembled to form composite aerogel in mild condition. Impressively, the doping of optimizing ETAC greatly improved the overall specific surface area (SSA) of the aerogel, and the CNF extracted from Eucommia ulmoides wood was used to enhance the mechanical properties of graphene aerogel. Besides, the composite aerogels with high content of ETAC (67% of mass ratio) possessed efficient MnOx deposition capability (1540 mg/g), which could assemble an asymmetric free-binder supercapacitor, exhibiting an ultrahigh specific capacitance and prominent cycling stability.

View Article and Find Full Text PDF

The molecular diversity of aggregation-induced emission remains a challenge due to the limitation of conventional synthesis methods. Here, a series of novel neutral and cationic conjugated polymers composed of various ratios of tetraarylethylene (TAE) containing a bridged oxygen (O) and fluorene (F) units is designed and synthesized via the geminal cross-coupling (GCC) of 1,1-dibromoolefins. The incorporation of TAE segments into the conjugated backbone of polyfluorene produces pronounced aggregation-induced ratiometric fluorescence, i.

View Article and Find Full Text PDF