Publications by authors named "Zhu Cheng"

Objective: To analyze the clinical efficacy and safety of microsurgery in patients with Gustilo ⅢC open fractures.

Methods: A total of 64 patients with Gustilo ⅢC open fractures who were admitted to the hospital bewteen September 2018 and March 2022 were included, and divided into the observation group and the control group, with 32 cases in each one. In the observation group, there were 24 males and 8 females, aged from 29 to 42 years with an average of (36.

View Article and Find Full Text PDF

Formamidinium lead triiodide (FAPbI) is considered the most promising composition for high-performing single-junction solar cells. However, nonalloyed α-FAPbI is metastable with respect to the photoinactive δ-phase. We have developed a kinetic modulation strategy to fabricate high-quality and stable nonalloyed α-FAPbI films, assisted by cogenetic volatile iodine intercalation and decalation.

View Article and Find Full Text PDF

Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.

View Article and Find Full Text PDF

Water splitting is one of the most promising technologies for generating green hydrogen. To meet industrial demand, it is essential to boost the operation current density to industrial levels, typically in the hundreds of mA cm. However, operating at these high current densities presents significant challenges, with bubble formation being one of the most critical issues.

View Article and Find Full Text PDF

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.

View Article and Find Full Text PDF
Article Synopsis
  • The commercialization of perovskite solar cells (PSCs) is hindered by their fragility and sensitivity to moisture.
  • A new asynchronous cross-linking strategy using divinyl sulfone (DVS) improves perovskite crystallization and creates a durable network through post-treatment with glycerinum.
  • This method boosts the efficiency of PSCs to over 25%, enhances their water resistance, reduces stress, and improves durability, marking a significant advancement in their performance and longevity.
View Article and Find Full Text PDF

Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that combine high ionic conductivity with stability in contact with the highly reducing potentials of next-generation anodes. Fully reduced electrolytes, based on irreducible anions, offer a promising solution by avoiding electrolyte decomposition altogether.

View Article and Find Full Text PDF

Periodontitis, a chronic inflammatory disease, is the leading cause of tooth loss in adults and is one of the most prevalent and complex oral conditions. Oxidative stress induced by the excessive generation of reactive oxygen species (ROS) leads to periodontitis, which is closely associated with pathological processes, including mitochondrial dysfunction of periodontal cells and local immune dysregulation. However, current treatment modalities that target single pathological processes have limited long-term therapeutic effects.

View Article and Find Full Text PDF

Background: Obsessive-compulsive disorder (OCD) is a common and debilitating mental disorder. Neuroimaging studies have highlighted that the dysfunctional default mode network (DMN) plays a key role in the pathophysiology mechanisms of OCD. However, the findings of impaired DMN regions have been inconsistent.

View Article and Find Full Text PDF
Article Synopsis
  • Natural enzyme-based therapies for cancer often struggle with stability during delivery, limiting their effectiveness.
  • Researchers created a new nanoplatform called GCI@RPCM that uses natural enzymes and a photothermal agent, enclosed in special materials targeting tumors and responding to heat.
  • This system can release enzymes when activated by NIR light, significantly reducing tumor cells and completely eradicating tumors in tests without causing harm to the rest of the body.
View Article and Find Full Text PDF

Retinal neovascularization is a pathological feature of ischemic retinopathy. Current therapeutic approaches are limited, and additional treatment options are needed. This study aims to discover lead compounds from Salvia substolonifera that inhibit angiogenesis.

View Article and Find Full Text PDF

Renal fibrosis is a common pathological process of progressive chronic kidney disease (CKD). However, effective therapy is constrained currently. Autophagy is an important mechanism in kidney injury and repairment but its exact role in renal fibrosis was discrepant according to previous studies.

View Article and Find Full Text PDF

Peptides are crucial in vaccine research, and their remarkable specificity and efficacy make them a promising potential drug class. However, designing and screening these peptides computationally is challenging. Here, we present the comprehensive advanced refinement and evaluation system (PepCARES), a program utilizing our novel model called PeptideMPNN and score evaluation for peptide design and affinity screening.

View Article and Find Full Text PDF
Article Synopsis
  • The text refers to a correction made to an academic article with the DOI 10.3389/fnins.2021.823550.
  • This indicates that there were errors or updates in the original publication.
  • Corrections of this nature are important for maintaining the accuracy and credibility of scientific research.
View Article and Find Full Text PDF

The EPIC III study showed that 52% of patients admitted to the intensive care unit (ICU) have infectious diseases and that the incidence of ICU-acquired infections is increasing, leading to longer ICU stays and higher mortality rates. Multiple-site decontamination, a type of selective decontamination program, has been associated with a reduction in the incidence of ICU-acquired infection and decreased mortality rates in some critically ill patients. However, the standardized implementation and actual effectiveness of multiple-site decontamination require further investigation.

View Article and Find Full Text PDF

B cell maturation depends on cognate interactions between the T and B cells. Upon interaction with CD40 ligand (CD40L) on T cells, CD40 delivers costimulatory signals alongside B cell antigen receptor (BCR) signaling to regulate affinity maturation and antibody class switch. Mutations affecting CD40-CD40L interactions cause abnormal antibody responses in immunodeficiencies known as X-linked hyper-IgM syndrome (X-HIgM).

View Article and Find Full Text PDF

Host immune system has evolved multiple sensors to detect pathogenic and damaged DNA, where precise regulation is critical for distinguishing self from non-self. Our previous studies showed that NLRC3 is an inhibitory nucleic acid sensor that binds to viral DNA and thereby unleashing STING activation. In this study, we demonstrate that human NLRC3 favors long dsDNA, while porcine NLRC3 shows an affinity for shorter dsDNA.

View Article and Find Full Text PDF

Kimura & Migo () is a well-recognized traditional Chinese medicinal herb that is both medicinal and edible. Contemporary pharmacological studies have revealed that contains abundant bioactive compounds, including polysaccharides, flavonoids, alkaloids, and dendrobine, exhibiting diverse pharmacological properties such as antioxidant, anti-inflammatory, and immunomodulatory effects. However, the industrial application of faces many problems, such as the scarcity of wild resources, low natural reproduction rate, and slow growth rate as well as the lack of relevant industrial standards.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of organic ligands in enhancing phosphorescence in two-dimensional perovskites, focusing on isomeric ligands 1-NMA and 2-NMA.
  • It reveals that while triplet energy transfer (TET) is rapid and efficient in (1-NMA)PbBr, the formation of triplet excimers is significantly hindered in (2-NMA)PbBr due to differences in ligand stacking.
  • By adjusting the mixture of these ligands, the researchers achieve a significant 7.6-fold increase in phosphorescence efficiency, despite the overall low efficiency due to nonradiative decay.
View Article and Find Full Text PDF

Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms.

View Article and Find Full Text PDF

DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain (CSD) proteins that bind RNA/DNA and exert intracellular functions in cell stress, proliferation, and differentiation. Given the pattern of DbpA staining in inflammatory glomerular diseases, without adherence to cell boundaries, we hypothesized extracellular protein occurrence and specific functions. Lipopolysaccharide and ionomycin induce DbpA expression and secretion from melanoma and mesangial cells.

View Article and Find Full Text PDF

CRISPR/Cas12a systems have been repurposed as powerful tools for developing next-generation molecular diagnostics due to their -cleavage ability. However, it was long considered that the CRISPR/Cas12a system could only recognize DNA targets. Herein, we systematically investigated the intrinsic -cleavage activity of the CRISPR/Cas12a system (LbCas12a) and found that it could be activated through fragmented ssDNA activators.

View Article and Find Full Text PDF

IL-4 and IL-13 have non-redundant effects in olfaction, with loss of smell in mice evoked only by intranasal administration of IL-4, but not IL-13. IL-4-evoked pathophysiological effects on olfaction is independent of compromised structural integrity of the olfactory neuroepithelium. IL-4-IL-4Rα signaling modulates neuronal crosstalk with immune cells, suggesting a functional link between olfactory impairment and neuroinflammation.

View Article and Find Full Text PDF

Despite the success of PD-1 blockade in cancer therapy, how PD-1 initiates signaling remains unclear. Soluble PD-L1 is found in patient sera and can bind PD-1 but fails to suppress T cell function. Here, we show that PD-1 function is reduced when mechanical support on ligand is removed.

View Article and Find Full Text PDF

2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) is an emerging persistent organic pollutant ubiquitously found in environmental matrices. Though some advanced oxidation processes have been tested to degrade UV328 in waste streams, the degradation mechanisms are largely unknown. In this study, the degradation of UV328 by ozone (O) and peroxymonosulfate (PMS) was systemically investigated.

View Article and Find Full Text PDF