Polymers (Basel)
November 2018
The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media.
View Article and Find Full Text PDFPolymer degradation is critical for polymer flooding because it can significantly influence the viscosity of a polymer solution, which is a dominant property for polymer enhanced oil recovery (EOR). In this work, physical experiments and numerical simulations were both used to study partially hydrolyzed polyacrylamide (HPAM) degradation and its effect on polymer flooding in heterogeneous reservoirs. First, physical experiments were conducted to determine basic physicochemical properties of the polymer, including viscosity and degradation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2018
The manipulation of a nanoconfined fluid flow is a great challenge and is critical in both fundamental research and practical applications. Compared with chemical or biochemical stimulation, the use of temperature as controllable, physical stimulation possesses huge advantages, such as low cost, easy operation, reversibility, and no contamination. We demonstrate an elegant, simple strategy by which temperature stimulation can readily manipulate the nanoconfined water flow by tuning interfacial and viscous resistances.
View Article and Find Full Text PDF