Background: Poly-GA, a dipeptide repeat protein unconventionally translated from GGGGCC (G4C2) repeat expansions in C9orf72, is abundant in C9orf72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9orf72-ALS/FTD). Although the poly-GA aggregates have been identified in C9orf72-ALS/FTD neurons, the effects on UPS (ubiquitin-proteasome system) and autophagy and their exact molecular mechanisms have not been fully elucidated.
Results: Herein, our in vivo experiments indicate that the mice expressing ploy-GA with 150 repeats instead of 30 repeats exhibit significant aggregates in cells.
Background: Walker-Warburg syndrome (WWS) is a genetically heterogeneous disease that often presents with complex brain and eye malformations and congenital muscular dystrophy. Mutations of the ISPD gene have been identified as one of the most frequent causes of WWS.
Objective: The current study aimed to identify the cause of severe congenital hydrocephalus and brain dysplasia in our subject.
Mitophagy controls mitochondrial quality to maintain cellular homeostasis, while aberrations in this process are responsible for neurodegenerative diseases. Mitophagy is initiated through the recruitment of autophagosomes in a ubiquitin-dependent or ubiquitin-independent manner under different stress conditions. Although the detailed molecular mechanisms of how mitophagy processes influence neurodegeneration remain largely uncharacterized, there is mounting evidence indicating that non-coding RNAs (ncRNAs), a variety of endogenous regulators, including microRNAs and long non-coding RNAs, extensively participate in mitophagy processes and play pivotal roles in the aging process and neurodegenerative diseases.
View Article and Find Full Text PDFGrowth arrest and DNA damage-inducible 45β (GADD45β) belongs to the GADD45 family which is small acidic proteins in response to cellular stress. GADD45β has already been reported to have excellent capabilities against cancer, innate immunity and neurological diseases. However, there is little information regard GADD45β and non-alcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDFAims: PTEN induced putative kinase 1 (PINK1)-mediated mitophagy process is tightly associated with various age-dependent diseases in mammals. The roles of miRNAs (miRNAs) in the PINK1-mediated mitophagy process are not fully understood. Here we discovered that miR-34a-5p suppresses PINK1 expression directly though two post-transcriptional non-classical binding modes, resulting in inhibition of PINK1-mediated mitophagy process.
View Article and Find Full Text PDFBackground & Aims: The nuclear location of miRNAs has been known for more than a decade, but the exact function of miRNAs in the nucleus has not been fully elucidated. We previously discovered that intranuclear miR-552-3p has an inhibitory role on gene transcription and contains a particular AGGTCA-like sequence, the cis-elements of the NR1 subfamily of nuclear receptors. Here, we aim to explore the potential effect of miR-552-3p and its AGGTCA-like sequence on NR1s and its possible application in improving hepatic glycolipid metabolism.
View Article and Find Full Text PDFAccumulation of PINK1 on the outer mitochondrial membrane (OMM) is necessary for PINK-mediated mitophagy. The proton ionophores, like carbonyl cyanide m-chlorophenylhydrazone (CCCP) and carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), inhibit PINK1 import into mitochondrial matrix and induce PINK1 OMM accumulation. Here, we show that the CHCHD4/GFER disulfide relay system in the mitochondrial intermembrane space (IMS) is required for PINK1 stabilization when mitochondrial membrane potential is lost.
View Article and Find Full Text PDFCell Death Differ
January 2021
Lysosome is a crucial organelle in charge of degrading proteins and damaged organelles to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master transcription factor regulating lysosomal biogenesis and autophagy. Under external stimuli such as starvation, dephosphorylated TFEB transports into the nucleus to specifically recognize and bind to the coordinated lysosomal expression and regulation (CLEAR) elements at the promotors of autophagy and lysosomal biogenesis-related genes.
View Article and Find Full Text PDFTumor invasion underlies further metastasis, the leading cause for cancer-related deaths. Deregulation of microRNAs has been identified associated with the malignant behavior of various cancers, including lung adenocarcinoma (LUAD), the major subtype of lung cancer. Here, we showed the significantly positive correlation between miR-629-5p level and tumor invasion in LUAD specimens (n = 49).
View Article and Find Full Text PDFGGGGCC repeat expansion in C9orf72 is the most common genetic cause in both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two neurodegenerative disorders in association with aging. Bidirectional repeat expansions in the noncoding region of C9orf72 have been shown to produce dipeptide repeat (DPR) proteins through repeat-associated non-ATG (RAN) translation and to reduce the expression level of the C9orf72 gene product, C9orf72 protein. Mechanisms underlying C9orf72-linked neurodegeneration include expanded RNA repeat gain of function, DPR toxicity, and C9orf72 protein loss of function.
View Article and Find Full Text PDFA GGGGCC hexanucleotide repeat expansion in intron 1 of chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Repeat-associated non-ATG translation of dipeptide repeat proteins (DPRs) contributes to the neuropathological features of c9FTD/ALS. Among the five DPRs, arginine-rich poly-PR are reported to be the most toxic.
View Article and Find Full Text PDFCell Stress Chaperones
January 2019
Autophagy plays an important role in maintaining cell function. Abnormal autophagy leads to cell dysfunction and is associated with many diseases such as tumors, immunodeficiency diseases, lysosomal storage disorders, and neurodegenerative diseases. Autophagy is precisely regulated, and PTEN plays an important role in regulating autophagy.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that participate in a majority of biological processes via regulating target gene expression. The post-transcriptional repression through miRNA seed region binding to 3' UTR of target mRNA is considered as the canonical mode of miRNA-mediated gene regulation. However, emerging evidence suggests that other regulatory modes exist beyond the canonical mechanism.
View Article and Find Full Text PDFAim: In the penumbra after focal cerebral ischemia, an increase of protease Omi is linked to a decrease of Hs1-associated protein X-1 (Hax-1), a protein belonging to the Bcl-2 family. In this study we investigated the mechanisms underlying the regulation of Hax-1 by protease Omi in cerebral ischemia/reperfusion (I/R) injury.
Methods: Mouse neuroblastoma N2a cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R); cell viability was assessed with MTT assay.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are the two common neurodegenerative diseases that have been associated with the GGGGCC·GGCCCC repeat RNA expansion in a noncoding region of C9orf72. It has been previously reported that unconventional repeat-associated non-ATG (RAN) translation of GGGGCC·GGCCCC repeats produces five types of dipeptide-repeat proteins (referred to as RAN proteins): poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-proline-arginine (PR) and poly-proline-alanine (PA). Although protein aggregates of RAN proteins have been found in patients, it is unclear whether RAN protein aggregation induces neurotoxicity.
View Article and Find Full Text PDF