Motivation: Enhancers are important -regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-related multiscale contextual information from raw DNA sequences.
Results: In this article, we propose a novel enhancer identification method (iEnhancer-ELM) based on BERT-like enhancer language models.
Motivation: Protein function annotation is fundamental to understanding biological mechanisms. The abundant genome-scale protein-protein interaction (PPI) networks, together with other protein biological attributes, provide rich information for annotating protein functions. As PPI networks and biological attributes describe protein functions from different perspectives, it is highly challenging to cross-fuse them for protein function prediction.
View Article and Find Full Text PDFProtein complexes play important roles in most cellular processes. The available genome-wide protein-protein interaction (PPI) data make it possible for computational methods identifying protein complexes from PPI networks. However, PPI datasets usually contain a large ratio of false positive noise.
View Article and Find Full Text PDFProtein complexes are key units for studying a cell system. During the past decades, the genome-scale protein-protein interaction (PPI) data have been determined by high-throughput approaches, which enables the identification of protein complexes from PPI networks. However, the high-throughput approaches often produce considerable fraction of false positive and negative samples.
View Article and Find Full Text PDFProtein complexes are the fundamental units for many cellular processes. Identifying protein complexes accurately is critical for understanding the functions and organizations of cells. With the increment of genome-scale protein-protein interaction (PPI) data for different species, various computational methods focus on identifying protein complexes from PPI networks.
View Article and Find Full Text PDF