Publications by authors named "Zhouquan Fu"

Owing to its thermoresponsive and photocrosslinking characteristics, gelatin methacryloyl (GelMA)-based biomaterials have gained widespread usage as a novel and promising bioink for three-dimensional bioprinting and diverse biomedical applications. However, the flow behaviors of GelMA during the sol-gel transition, which are dependent on time and temperature, present significant challenges in printing thick scaffolds while maintaining high printability and cell viability. Moreover, the tunable properties and photocrosslinking capabilities of GelMA underscore its potential for localized drug delivery applications.

View Article and Find Full Text PDF

Bioprinting is an emerging technology for the construction of complex three-dimensional (3D) constructs used in various biomedical applications. One of the challenges in this field is the delicate manipulation of material properties and various disparate printing parameters to create structures with high fidelity. Understanding the effects of certain parameters and identifying optimal parameters for creating highly accurate structures are therefore a worthwhile subject to investigate.

View Article and Find Full Text PDF

Extrusion bioprinting has been widely used to extrude continuous filaments of bioink (or the mixture of biomaterial and living cells), layer-by-layer, to build three-dimensional constructs for biomedical applications. In extrusion bioprinting, printability is an important parameter used to measure the difference between the designed construct and the one actually printed. This difference could be caused by the extrudability of printed bioink and/or the structural formability and stability of printed constructs.

View Article and Find Full Text PDF