Introduction: The yield and quality of tomato (Solanum lycopersicum. L) are often decreased when plants suffer from low light intensity and short-photoperiod in winter. Manipulation of the artificial light environment is a feasible technology to promote off-seasonal production and improve fruit nutritional quality in the greenhouse.
View Article and Find Full Text PDFCorrosion inhibitor additives are considered to be one of the effective methods to slow down the corrosion of metals, but the corrosion inhibitors will decompose and lose their effect in a long-term corrosive environment. In this work, a smart corrosion inhibitor carrier 2-mercaptobenzimidazole-Zn-polydopamine@graphite (MZPG) with excellent pH response was designed and synthesized using a one-pot method. This corrosion inhibitor carrier not only has a very high 2-mercaptobenzimidazole (MBI) loading capacity (38.
View Article and Find Full Text PDFIncreasing photosynthesis and light capture offers possibilities for improving crop yield and provides a sustainable way to meet the increasing global demand for food. However, the poor light transmittance of transparent plastic films and shade avoidance at high planting density seriously reduce photosynthesis and alter fruit quality in vegetable crops, and therefore it is important to investigate the mechanisms of light signaling regulation of photosynthesis and metabolism in tomato (). Here, a combination of red, blue, and white (R1W1B0.
View Article and Find Full Text PDFCold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress.
View Article and Find Full Text PDFFertilizer application is the most common measure in agricultural production, which can promote the productivity of crops such as cucumbers, but the problem of excessive fertilization occurs frequently in solar greenhouses. However, the effects of fertilization levels on cucumber rhizosphere soil microbes and metabolites and their relationships are still unclear. In order to determine how fertilization levels affect the rhizosphere microenvironment, we set up four treatments in the solar greenhouse: no-fertilization (N0P0K0), normal fertilization (N1P1K1), slight excessive fertilization (N2P2K2), and extreme excessive fertilization (N3P3K3).
View Article and Find Full Text PDFBackground: Nitrification can lead to large quantities of nitrate leaching into the soil during vegetable production, which may result in soil acidification in a greenhouse system. A better understanding is needed of the nitrification process and its microbial mechanisms in soil acidification.
Materials And Methods: A simulated acidification experiment with an artificially manipulated pH environment (T1: pH 7.
Long-term monoculture cropping and overfertilization degrade soil fertility, which reduces crop growth and promotes the development of soil-borne diseases. However, it remains unclear what the temporal effects of the above factors are on the tomato yield and microbial community structure. Thus, a greenhouse experiment with different amounts of fertilization [2,196 kg ha (control) and 6,588 kg ha (overfertilization) of inorganic fertilizers (NPK)] was carried out with the soils used previously for 1, 2, and 12 years under monoculture of tomato.
View Article and Find Full Text PDFIn this study, we investigated the effects of long-term continuous cucumber cropping on phenolic acids in rhizosphere soil, as well as their link to soil chemical characteristics, enzyme activities, and microbiological activities, using rhizosphere soil from the 2nd, 6th, 10th, 14th, 18th, 20th, 24th, and 26th round of cucumber cultivation in solar greenhouse. The results showed that contents of phenolic acids increased significantly with increasing continuous cropping rounds. The increase amount per round of total phenolic acid was significantly higher in the early stage (0-2 rounds) and late stage (20-26 rounds) than middle stage (10-14 rounds) of continuous cropping.
View Article and Find Full Text PDFThe area covered by Chinese-style solar greenhouses (CSGs) has been increasing rapidly. However, only a few pyranometers, which are fundamental for solar radiation sensing, have been installed inside CSGs. The lack of solar radiation sensing will bring negative effects in greenhouse cultivation such as over irrigation or under irrigation, and unnecessary power consumption.
View Article and Find Full Text PDFObjective: To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress.
Methods: Six-leaf-stage tomato seedlings ("Liaoyuanduoli", n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 µmol/(m·s); Part 2, spayed with distilled water (HO) under 35 °C, 1000 µmol/(m·s) (HH); Part 3, spayed with 100 µmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 µmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d.
High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light intensity stress (HH, 35°C, 1000 μmol⋅m⋅s) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2015
The root system of tomato plant (Lycopersicon esculentum L. cv. Liaoyuanduoli) was treated with CO2 enrichment by aeroponical culture for 60 days.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2013
By using aeroponics culture system, this paper studied the effects of elevated rhizosphere CO2 concentration on the leaf photosynthesis and the fruit yield and quality of muskmelon during its anthesis-fruiting period. In the fruit development period of muskmelon, as compared with those in the control (350 microL CO2 x L (-1)), the leaf chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and the maximal photochemical efficiency of PS II (Fv/Fm) in treatments 2500 and 5000 microL CO2 x L(-1) decreased to some extents, but the stomatal limitation value (Ls) increased significantly, and the variation amplitudes were larger in treatment 5000 microL CO2 x L(-1) than in treatment 2500 microL CO2 x L(-1). Under the effects of elevated rhizosphere CO2 concentration, the fruit yield per plant and the Vc and soluble sugar contents in fruits decreased markedly, while the fruit organic acid content was in adverse.
View Article and Find Full Text PDFBundle-sheath conductance (g(bs) ) affects CO(2) leakiness, and, therefore, the efficiency of the CO(2) -concentrating mechanism (CCM) in C(4) photosynthesis. Whether and how g(bs) varies with leaf age and nitrogen status is virtually unknown. We used a C(4) -photosynthesis model to estimate g(bs) , based on combined measurements of gas exchange and chlorophyll fluorescence on fully expanded leaves of three different ages of maize (Zea mays L.
View Article and Find Full Text PDFDay respiration (R(d)) is an important parameter in leaf ecophysiology. It is difficult to measure directly and is indirectly estimated from gas exchange (GE) measurements of the net photosynthetic rate (A), commonly using the Laisk method or the Kok method. Recently a new method was proposed to estimate R(d) indirectly from combined GE and chlorophyll fluorescence (CF) measurements across a range of low irradiances.
View Article and Find Full Text PDFBy using aeroponics culture system, this paper studied the impacts of root-zone hypoxia (10% O2 and 5% O2) stress on the plant growth, root respiratory metabolism, and antioxidative enzyme activities of muskmelon at its fruit development stage. Root-zone hypoxia stress inhibited the plant growth of muskmelon, resulting in the decrease of plant height, root length, and fresh and dry biomass. Comparing with the control (21% O2), hypoxia stress reduced the root respiration rate and malate dehydrogenase (MDH) activity significantly, and the impact of 5% O2 stress was more serious than that of 10% O2 stress.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
January 2010
Aeroponics can increase the fruit yield of tomato plant, but its cost is very high. In this paper, tomato seedlings were planted with three cultures, i. e.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
March 2009
In order to investigate the regulation effect of Ca2+ and salicylic acid (SA) on the sub-high temperature resistance of tomato plants, the plants were treated with sub-high temperature (35 degrees C) at day time during their 1st inflorescence flowering, and CaCl2 (10 mmol x L(-1)) and SA (0.2 mmol x (L(-1 were foliar sprayed to study the variations of the activities of defense enzymes (SOD, POD, and CAT) and the content of soluble protein in tomato leaves, taking spraying clear water under 25 degrees C at day time as the control. The results showed that under the sub-high temperature stress, the SOD, CAT and POD activities in tomato leaves were decreased by 14.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
November 2005
With the method of areoponics, this paper established a rhizosphere gas environment research system to study the effects of different rhizosphere CO2 concentration on the growth of potato (Solanum tuberosum) plants. The results showed that in treatments 380 and 380 approximately 920 micromol CO2 x mol(-1), the plant height, stem diameter, leaf area, root length, and individuals of stolon and mini-tuber had a similar variation trend with time, and presented two distinct phases. The plants grew vigorously, and their tuber yield increased markedly, compared with treatment 3,600 micromol CO2 x mol(-1), which indicated that 380 approximately 920 micromol CO2 x mol(-1) was the appropriate CO2 concentration in the root zone to promote potato growth, while overmuch rhizosphere CO2 would markedly inhibit the growth and development of potato plants.
View Article and Find Full Text PDF