A molecule-electrode interface with different coupling strengths is one of the greatest challenges in fabricating reliable molecular switches. In this paper, the effects of bridging manner on the transport behaviors of a dimethyldihydropyrene/cyclophanediene (DHP/CPD) molecule connected to two graphene nanoribbon (GNR) electrodes have been investigated by using the non-equilibrium Green's function combined with density functional theory. The results show that both current values and ON/OFF ratios can be modulated to more than three orders of magnitude by changing bridging manner.
View Article and Find Full Text PDF