Publications by authors named "Zhou Yankai"

To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.

View Article and Find Full Text PDF

Polymer semiconductors with mobilities exceeding 10 cm V s , especially ambipolar and n-type polymer semiconductors, are still rare, although they are of great importance for fabricating polymer field-effect transistors (PFETs) toward commercial high-grade electronics. Herein, two novel donor-acceptor copolymers, PNFFN-DTE and PNFFN-FDTE, are designed and synthesized based on the electron-deficient bisisoindigo (NFFN) and electron-rich dithienylethylenes (DTE or FDTE). The copolymer PNFFN-DTE, containing NFFN and DTE, possesses a partially locked polymeric conjugated backbone, whereas PNFFN-FDTE, containing NFFN and FDTE, has a fully locked one.

View Article and Find Full Text PDF

Inverted perovskite solar cells (PSCs) have been extensively studied by reason of their negligible hysteresis effect, easy fabrication, flexible PSCs and good stability. The certified photoelectric conversion efficiency (PCE) achieved 23.5% owing to the formed lead-sulfur (Pb-S) bonds through the surface sulfidation process of perovskite film, which gradually approaches the performance of traditional upright structure PSCs and indicates their industrial application potential.

View Article and Find Full Text PDF

As the third generation of new thin-film solar cells, perovskite solar cells (PSCs) have attracted much attention for their excellent photovoltaic performance. Today, PSCs have reported the highest photovoltaic conversion efficiency (PCE) of 25.5%, which is an encouraging value, very close to the highest PCE of the most widely used silicon-based solar cells.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are currently attracting a great deal of attention for their excellent photovoltaic properties, with a maximum photoelectric conversion efficiency (PCE) of 25.5%, comparable to that of silicon-based solar cells. However, PSCs suffer from energy level mismatch, a large number of defects in perovskite films, and easy decomposition under ultraviolet (UV) light, which greatly limit the industrial application of PSCs.

View Article and Find Full Text PDF

Organic semiconductor materials, especially donor-acceptor (D-A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D-A polymers. As the basic building block of D-A polymers, acceptor moieties have drawn much attention.

View Article and Find Full Text PDF

Ambipolar semiconducting materials have great potential in complementary-like organic logic circuits. Accessing such logic circuits demands balanced hole and electron mobilities. However, the lack of ambipolar high-mobility polymer semiconductors with balanced charge carrier-transporting properties precludes the rapid development of organic logic circuits.

View Article and Find Full Text PDF

The mouse maelstrom (MAEL) gene has been found to be expressed in male germ cells and to play a role in spermatogenesis. Here, we cloned the human MAEL gene by digital differential display and found that, among human tissues, MAEL is only expressed in the testis, but it is also expressed in various cancer cell lines. The transcription start site of the MAEL gene is 74-bp upstream of the start codon.

View Article and Find Full Text PDF

A novel testis-specific gene termed mtIQ1 (GenBank Accession No. DQ153246) was identified by digital differential display. Sequence analysis revealed that mtIQ1 protein is a new member of calmodulin (CaM) binding protein families with conserved Ile and Gln residues (IQ motif).

View Article and Find Full Text PDF

To seek the reason of heterogeneity of recombinant HWTX-I (rHWTX-I) expressed in Pichia pastoris. We expressed HWTX-I gene of interest in Pichia pastoris GS115/HWTX-I. The heterogenous product expressed was separated, purified and identified by using Ion exchange HPLC, reverse HPLC, Tricine SDS-PAGE and MALDI-TOF Mass Spectrometry and then sequenced in both N-terminus and C-terminus.

View Article and Find Full Text PDF