Color centers in silicon carbide (SiC) offer exciting possibilities for quantum information processing. However, the challenge of ionization during optical manipulation leads to charge variations, hampering the efficacy of spin-photon interfaces. Recent research predicted that modified divacancy color centers can stabilize their charge states, resisting photoionization.
View Article and Find Full Text PDFIn order to meet the market demand and avoid the increase of operation amount and cleaning cost in the process of ultrafiltration, it is particularly important to find more practical and efficient methods to control and improve membrane fouling. In this study, the ions in the ultrafiltration process were regulated to affect membrane surface proteins composition (lactoferrin, α-lactalbumin, β-lactoglobulin A and β-lactoglobulin B) and delay membrane fouling. It was found that Na (21 mmol/L), Zn (0.
View Article and Find Full Text PDFOptically addressable spin defects in silicon carbide (SiC) have emerged as attractable platforms for various quantum technologies. However, the low photon count rate significantly limits their applications. We strongly enhanced the brightness by 7 times and spin-control strength by 14 times of single divacancy defects in 4H-SiC membranes using a surface plasmon generated by gold film coplanar waveguides.
View Article and Find Full Text PDFPressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging.
View Article and Find Full Text PDFIn recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known about the effect of magnetic-angle-dependent coherence time, which is an essential complement to defect spin properties.
View Article and Find Full Text PDFSpin defects in silicon carbide appear to be a promising tool for various quantum technologies, especially for quantum sensing. However, this technique has been used only at ambient pressure until now. Here, by combining this technique with diamond anvil cell, we systematically study the optical and spin properties of divacancy defects created at the surface of SiC at pressures up to 40 GPa.
View Article and Find Full Text PDFThe factors affecting membrane fouling are very complex. In this study, the membrane fouling process was revealed from the perspective of ion environment changes, which affected the whey protein structure during ultrafiltration. It was found that the concentrations of Ca and Na were overall increased and the concentrations of K, Mg and Zn were decreased at an ultrafiltration time of 11 min, which made more hydrophilic groups buried inside and increased the content of α-helix, leading to more protein aggregation.
View Article and Find Full Text PDFSpin defects in silicon carbide (SiC) with mature wafer-scale fabrication and micro/nano-processing technologies have recently drawn considerable attention. Although room-temperature single-spin manipulation of colour centres in SiC has been demonstrated, the typically detected contrast is less than 2[Formula: see text], and the photon count rate is also low. Here, we present the coherent manipulation of single divacancy spins in 4H-SiC with a high readout contrast ([Formula: see text]) and a high photon count rate (150 kilo counts per second) under ambient conditions, which are competitive with the nitrogen-vacancy centres in diamond.
View Article and Find Full Text PDFThis study aimed to improve the stability of the anthocyanins and phenolic acids of blueberry by forming hydrogen bonds or hydrophobic interactions with whey protein using lactic acid fermentation. The effects of the initial pH on the characteristics of the whey protein and blueberry juice system fermented using and were investigated. The color and total phenol and anthocyanin contents of the blueberry juice and whey protein system became stable after fermentation using and .
View Article and Find Full Text PDFIn this study, enzymatic cross-linked whey protein coupling ultrafiltration was used to reduce membrane fouling and increase whey protein recovery rate. The filtration efficiency and protein interaction with the membrane surface were investigated. The results showed that the protein recovery rate and relative flux of transglutaminase catalysis protein followed by tyrosinase each increased by approximately 30% during ultrafiltration.
View Article and Find Full Text PDF