This study aimed to evaluate and compare the effects of inertial flywheel training and accentuated eccentric loading training on the neuromuscular performance of well-trained male college sprinters. Fourteen sprinters were recruited and randomly assigned to either the flywheel training (FWT, = 7) group or the accentuated eccentric loading training (AELT, = 7) group. The FWT group completed four sets of 2 + 7 repetitions of flywheel squats, whereas the AELT group performed four sets of seven repetitions of barbell squats (concentric/eccentric: 80%/120% 1RM).
View Article and Find Full Text PDFBackground: This systematic review and meta-analysis aimed to analyze whether isoinertial flywheel training (FWT) is superior to traditional resistance training (TRT) in enhancing maximal strength and muscle power in healthy individuals.
Methods: Electronic searches were conducted in the Web of Science, PubMed, Cochrane Library, SPORTDiscus, and Scopus databases up to 21 April 2024. Outcomes were analyzed as continuous variables using either a random or fixed effects model to calculate the standardized mean difference (SMD) and 95% confidence intervals (CI).
Objective: The primary objective of this study was to investigate the immediate effects of two doses (Dose1 and Dose2,D1 and D2) of inertial Flywheel Eccentric Overload (FEOL), Eccentric Hook (EH), and High-intensity Half Squat (HHS) on muscle explosiveness in male sprinters.
Methods: Twenty-one sub-elite male sprinters were randomly assigned to three groups: the FEOL group (n=7), the EH group (n=7), and the HSS group (n=7),Measurements of athletes' explosive jumps (CMJ, SJ, SLJ) heights, relative peak power indices, and 30-m sprint times were collected before and 6 min after the intervention.
Results: At D1 loading dose, CMJ, SJ jump height, and relative peak power increased significantly (p < 0.