Publications by authors named "Zhongzhe Wei"

Understanding the interaction between Ru and Co components and the alloy ratio effects on the catalytic process is a technical challenge that requires a precise alloy structural design. This study proposes an effective stepwise annealing method for the construction of RuCo alloy-based electrocatalysts with varied Ru:Co ratios. Interestingly, as the concentration of Co in the first-step pyrolysis products increases, the secondary pyrolysis results in RuCo composites undergoing a transition from incomplete alloying to alloy ratios of 1:1, 1:2, and 1:8.

View Article and Find Full Text PDF

Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction.

View Article and Find Full Text PDF
Article Synopsis
  • 2D metallene nanomaterials are gaining interest in catalysts due to their unique properties like unsaturated metal atoms and high surface area, but controlling their shape can be challenging.
  • A new galvanic replacement method has been developed to create palladium (Pd) metallenes supported on NbC MXenes at room temperature, resulting in unique chair-like structures that enhance catalytic performance.
  • The engineered Pd/NbC catalyst shows impressive results with a turnover frequency of 10,372 h⁻¹ and 96% selectivity at 25°C for semihydrogenating alkynes, highlighting its potential for future applications in catalysis.
View Article and Find Full Text PDF

The catalytic conversion of CO or CO/CO mixtures to higher alcohols (HAs) using hydrogenation reactions remains challenging in C1 chemistry and also one of the most promising reactions for the utilization of non-petroleum resources. Here, the experiment and characterization tests of CuCoMn/AlO show that copper is much more dispersed on γ-AlO than cobalt, and the interaction between cobalt and Mn metals is stronger. And, mixed cobalt-manganese oxides are formed in the calcined catalyst, promoting the formation of higher alcohols.

View Article and Find Full Text PDF

Electrocatalytic water splitting for hydrogen production is an appealing way to reduce carbon emissions and generate renewable fuels. This promising process, however, is limited by its sluggish reaction kinetics and high-cost catalysts. Construction of low-cost and high-performance non-noble metal-based catalysts have been one of the most effective approaches to address these grand challenges.

View Article and Find Full Text PDF

N-doped porous carbon-based catalysts hold great promise for hydrogen evolution reaction (HER) due to their plentiful cavity construction, high specific surface area, and flexible metal assemblies. Nevertheless, the cumbersome synthetic process and the use of highly corrosive chemicals greatly increase the production costs and pollutions. Herein, we report a facile and eco-friendly thermal puffing strategy, which imitates the popcorn forming process, for the fabrication of N-doped hierarchical porous carbon-CoO catalysts.

View Article and Find Full Text PDF

Pyrolysis of styrene-butadiene rubber receives renewed attention due to its application in tackling the waste tire disposal problem while allowing energy recovery. The density functional theory calculation (DFT) and ReaxFF molecular dynamics simulation (MD) are adopted to study the pyrolysis process with the variation of temperature and pressure. The bond dissociation energies of intramonomer and intermonomer bonds in trimers with different linking methods are calculated by DFT, where the bond with low energy tends to break during the pyrolysis process.

View Article and Find Full Text PDF

Brittle porous materials offer a wide variety of promising applications due to their high surface-area-to-volume ratios and controllable porous structures. Getting comprehensive knowledge of the structural stability is of great significance for avoiding the irreversible destruction of these materials. Based on interpenetrating bicontinuous structures, we innovatively adopted a sequential mesoscopic simulation strategy to show the pore size effect on the mechanical stability, which involves structural evolution by the mesoscale dynamic density functional method and mechanical behavior by the highly efficient lattice spring model.

View Article and Find Full Text PDF

The electrocatalytical process is the most efficient way to produce ammonia (NH) under ambient conditions, but developing a highly efficient and low-cost metal-free electrocatalysts remains a major scientific challenge. Hence, single atom and double boron (B) atoms doped 2D graphene-like carbon nitride (CN-h2D) electrocatalysts have been designed (B@CN and B@CN), and the efficiency of N reduction reaction (NRR) is examined by density functional theory calculation. The results show that the single and double B atoms can both be strongly embedded in natural nanoporous CN with superior catalytic activity for N activation.

View Article and Find Full Text PDF

The structural and electronic properties of the interface are critical for the morphology of supported metal nanoparticles and thus the performance in catalysis, photonics, biomedical research, and other areas. To reveal the intrinsic mechanism of the formation of various morphologies, a multiscale simulation strategy is adopted to bridge the macroscopic structures by experimental observations and microscopic properties by theoretical calculations. This strategy incorporates the density functional theory (DFT) for the interaction energy calculation, the molecular dynamics (MD) simulation for the structure evolution, and theoretical model for the correlation with contact angles.

View Article and Find Full Text PDF

The research of a robust catalytic system based on single NiO electrocatalyst for hydrogen evolution reaction (HER) remains a huge challenge. Particularly, the factors that dominate the catalytic properties of NiO-based hybrids for HER have not been clearly demonstrated. Herein, a convenient protocol for the fabrication of NiO@bamboo-like carbon nanotube hybrids (NiO@BCNTs) is designed.

View Article and Find Full Text PDF

Graphitic carbon nanotubes (GCNTs) were fabricated from in situ produced graphitic carbon by calcining biomass/melamine/Ni(NO3)2·6H2O. Ni-based hybrids (NiOx@GCNTs) displayed superior catalytic capacity in direct dehydrogenation of ethylbenzene. The specific reaction rate can reach up to 8.

View Article and Find Full Text PDF

Remarkable hydrogen evolution reaction (HER) or superior oxygen evolution reaction (OER) catalyst has been applied in water splitting, however, utilizing a bifunctional catalyst for simultaneously generating H2 and O2 is still a challenging issue, which is crucial for improving the overall efficiency of water electrolysis. Herein, inspired by the superiority of carbon conductivity, the propitious H atom binding energy of metallic cobalt, and better OER activity of cobalt oxide, we synthesized cobalt-cobalt oxide/N-doped carbon hybrids (CoOx@CN) composed of Co(0), CoO, Co3O4 applied to HER and OER by simple one-pot thermal treatment method. CoOx@CN exhibited a small onset potential of 85 mV, low charge-transfer resistance (41 Ω), and considerable stability for HER.

View Article and Find Full Text PDF

Fabrication of hierarchically porous carbon materials (HPCs) with high surface area and pore volume has always been pursued. However, the currently effective template methods and acid/base activation strategies suffer from the drawbacks of either high costs or tedious steps. Herein, HPCs with 3D macro-mesopores and short-range meso-micropores were fabricated via an easy and sustainable two-step method from biomass.

View Article and Find Full Text PDF

The development of meaningful ways to transfer biomass into useful materials, more efficient energy carriers, and/or carbon storage deposits is a profound challenge of our days. Herein, an ionothermal carbonization (ITC) method, via treating natural resources (glucose, cellulose, and sugar cane bagesse) in nonmetal ionic liquids (ILs) at ∼200 °C, is established for the fabrication of porous heteroatom-doped carbon materials with high yield. Commercial ILs with bulky bis(trifluoromethylsulfonyl)imide anion or cross-linkable nitrile group were found to be efficient and recyclable templates for porosity control, leading to exciting nanoarchitectures with promising performance in oxygen reduction reaction.

View Article and Find Full Text PDF

Due to their versatile features and environmental friendliness, functionalized carbon materials show great potential in practical applications, especially in energy conversion. Developing carbon composites with properties that can be modulated by simply changing the ratio of the original materials is an intriguing synthetic strategy. Here, we took cyanamide and multiwalled carbon nanotubes as precursors and introduced a facile method to fabricate a series of graphitic carbon nitride/carbon nanotubes (g-C3 N4 /CNTs) composites.

View Article and Find Full Text PDF