IEEE Trans Image Process
April 2021
The low-rank tensor representation (LRTR) has become an emerging research direction to boost the multi-view clustering performance. This is because LRTR utilizes not only the pairwise relation between data points, but also the view relation of multiple views. However, there is one significant challenge: LRTR uses the tensor nuclear norm as the convex approximation but provides a biased estimation of the tensor rank function.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2022
Multiview clustering as an important unsupervised method has been gathering a great deal of attention. However, most multiview clustering methods exploit the self-representation property to capture the relationship among data, resulting in high computation cost in calculating the self-representation coefficients. In addition, they usually employ different regularizers to learn the representation tensor or matrix from which a transition probability matrix is constructed in a separate step, such as the one proposed by Wu et al.
View Article and Find Full Text PDFIEEE Trans Cybern
February 2018
Generating chaotic maps with expected dynamics of users is a challenging topic. Utilizing the inherent relation between the Lyapunov exponents (LEs) of the Cat map and its associated Cat matrix, this paper proposes a simple but efficient method to construct an -dimensional ( -D) hyperchaotic Cat map (HCM) with any desired number of positive LEs. The method first generates two basic -D Cat matrices iteratively and then constructs the final -D Cat matrix by performing similarity transformation on one basic -D Cat matrix by the other.
View Article and Find Full Text PDFThis paper proposes a general framework of 1-D chaotic maps called the dynamic parameter-control chaotic system (DPCCS). It has a simple but effective structure that uses the outputs of a chaotic map (control map) to dynamically control the parameter of another chaotic map (seed map). Using any existing 1-D chaotic map as the control/seed map (or both), DPCCS is able to produce a huge number of new chaotic maps.
View Article and Find Full Text PDFIEEE Trans Cybern
November 2016
Different from existing methods that use matrix multiplications and have high computation complexity, this paper proposes an efficient generation method of n -dimensional ( [Formula: see text]) Cat maps using Laplace expansions. New parameters are also introduced to control the spatial configurations of the [Formula: see text] Cat matrix. Thus, the proposed method provides an efficient way to mix dynamics of all dimensions at one time.
View Article and Find Full Text PDFChaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps.
View Article and Find Full Text PDF