The effects of high-energy electron beam irradiation (HE-EBI) at various doses (0, 25, 50, 75, and 100 kGy) on the antioxidant activity of ovalbumin (OVA) were studied, and the molecular mechanism was investigated. The results showed that the antioxidant activity of HE-EBI-treated OVA was significantly enhanced in a dose-dependent manner. The irradiated OVA structure gradually unfolded to form a "honeycomb" structure, exposing the buried hydrophobic and free sulfhydryl groups inside the molecule.
View Article and Find Full Text PDFCo gamma-ray irradiation-induced antigenicity changes in ovalbumin (OVA) were investigated, and the molecular mechanism was analyzed. Irradiation treatment at 0-100 kGy could significantly enhance the IgG/IgE binding ability of OVA in a dose-dependent paradigm by concomitant oxidative modification, which exhibited color browning and an increase in carbonyl content caused by high-penetrable rays. More allergenic epitopes of OVA were exposed after irradiation treatment reflected by structural changes including the unfolding of tertiary structure, the conversion of α-helix structures to β-sheet and random coil structures, and the cleavage of several peptide bonds.
View Article and Find Full Text PDF