Publications by authors named "Zhongyang Lv"

Article Synopsis
  • The study highlights that wear debris from joint implants leads to excessive osteoclast activity, causing bone loss and implant failure in total joint surgeries.
  • Researchers developed hollow ruthenium oxide (RuO) nanospheres as an antioxidant to combat this problem by inhibiting processes that promote osteoclast formation and activity.
  • In experiments, these RuO nanospheres successfully reduced bone loss and negative tissue changes in mice exposed to harmful implant materials, suggesting potential for broader therapeutic uses in related inflammatory conditions.
View Article and Find Full Text PDF

Rotator cuff tear (RCT) is the primary cause of shoulder pain and disability and frequently trigger muscle degeneration characterised by muscle atrophy, fatty infiltration and fibrosis. Single-nucleus RNA sequencing (snRNA-seq) was used to reveal the transcriptional changes in the supraspinatus muscle after RCT. Supraspinatus muscles were obtained from patients with habitual shoulder dislocation (n = 3) and RCT (n = 3).

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most common degenerative joint disease, with articular cartilage degeneration as primary manifestation. Intra-articular injection of exogenous liposomal adenosine in mice knee has been shown to alleviate OA progression. However, the role of CD73, the rate-limiting enzyme of extracellular adenosine synthesis, in OA is still unknown.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a highly incident total joint degenerative disease with cartilage degeneration as the primary pathogenesis. The cartilage matrix is mainly composed of collagen, a matrix protein with a hallmark triple-helix structure, which unfolds with collagen degradation on the cartilage surface. A collagen hybridizing peptide (CHP) is a synthetic peptide that binds the denatured collagen triple helix, conferring a potential disease-targeting possibility for early-stage OA.

View Article and Find Full Text PDF

Transient receptor potential vanilloid family member 1 (TRPV1) has been revealed as a therapeutic target of osteoarthritis (OA), the most common deteriorating whole joint disease, by impeding macrophagic inflammation and chondrocytes ferroptosis. However, the clinical application for capsaicin as the TRPV1 agonist is largely limited by its chronic toxicity. To address this issue, we developed a bifunctional controllable magnetothermal switch targeting TRPV1 for the alleviation of OA progression by coupling of magnetic nanoparticles (MNPs) to TRPV1 monoclonal antibodies (MNPs-TRPV1).

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common degenerative joint disease worldwide, with the main pathological manifestation of articular cartilage degeneration. It have been investigated that pharmacological activation of transient receptor potential vanilloid 1 (TRPV1) significantly alleviated cartilage degeneration by abolishing chondrocyte ferroptosis. In this work, in view of the thermal activated feature of TRPV1, Citrate-stabilized gold nanorods (Cit-AuNRs) is conjugated to TRPV1 monoclonal antibody (Cit-AuNRs@Anti-TRPV1) as a photothermal switch for TRPV1 activation in chondrocytes under near infrared (NIR) irradiation.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most common age-related musculoskeletal disease. However, there is still a lack of therapy that can modify OA progression due to the complex pathogenic mechanisms. The aim of the study was to explore the role and mechanism of XJB-5-131 inhibiting chondrocytes ferroptosis to alleviate OA progression.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (mA) modification may have an important role in OA pathogenesis.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation and inflammation. The molecular mechanisms underlying OA progression remain incompletely understood. In this study, we investigated the role of STEAP3 (Six Transmembrane Epithelial Antigen of the Prostate 3) in the development of OA.

View Article and Find Full Text PDF

As a bulk solid waste with high alkalinity, red mud (RM) not only occupies a large amount of land and requires high maintenance costs, but also unavoidably generates serious hazards to the surrounding ecological environment. The comprehensive treatment of RM has become an enormous challenge for the green, low-carbon and high-quality development of the global alumina industry. To minimize the RM destruction to the ecology and the waste of secondary resources, the sustainable utilization of RM was widely investigated in the past decades, especially for the recovery of valuable metals.

View Article and Find Full Text PDF

Chondrocytes (CHs) in cartilage undergo several detrimental events during the development of osteoarthritis (OA). However, the mechanism underlying CHs regeneration involved in pathogenesis is largely unknown. The aim of this study was to explore the underlying mechanism of regeneration of CHs involved in the pathological condition and the potential therapeutic strategies of cartilage repair.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a low-level inflammatory disease in which synovial macrophage M1 polarization exacerbates the progression of synovitis and OA. Notedly, the ROS (reactive oxygen species) level in macrophages is intimately implicated in macrophage M1 polarization. TRPV4 (transient receptor potential channel subfamily V member 4), as an ion channel, plays a pivotal role in oxidative stress and inflammation.

View Article and Find Full Text PDF

Monolayer molybdenum disulfide (MoS ) nanoenzymes exhibit a piezoelectric polarization, which generates reactive oxygen species to inactivate tumors under ultrasonic strain. However, its therapeutic efficiency is far away from satisfactory, due to stackable MoS , quenching of piezo-generated charges, and monotherapy. Herein, chitosan-exfoliated monolayer MoS (Ch-MS) is composited with atomic-thin MXene, Ti C (TC), to self-assemble a multimodal nanoplatform, Ti C -Chitosan-MoS (TC@Ch-MS), for tumor inactivation.

View Article and Find Full Text PDF

Aims: Osteoarthritis (OA) is a common degenerative joint disease worldwide, which is characterized by articular cartilage lesions. With more understanding of the disease, OA is considered to be a disorder of the whole joint. However, molecular communication within and between tissues during the disease process is still unclear.

View Article and Find Full Text PDF

The fibrocartilage presented on the joint surface was caused by cartilage injury or degeneration. There is still a lack of effective strategies for fibrocartilage. Here, we hypothesized that the fibrocartilage could be viewed as a raw material for the renewal of hyaline cartilage and proposed a previously unidentified strategy of cartilage regeneration, namely, "fibrocartilage hyalinization.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most common degenerative joint disease primarily characterized by cartilage destruction. The aim of this study was to investigate the role, molecular characteristics and potential therapeutic target of chondrocyte ferroptosis in the pathogenesis of OA.

Methods: The expression of ferroptotic hallmarks (iron and lipid peroxidation accumulation, glutathione deletion) were analyzed in paired intact and damaged cartilages from OA patients.

View Article and Find Full Text PDF

Aseptic metal implant loosening due to wear particle-induced bone damage is a major complication of total joint arthroplasty often leading to revision surgery, of which the key regulators mediating the processes are not clearly defined. Here we reported that in a mouse model of calvarial osteolysis, titanium particles (TiPs) and cobalt-chromium-molybdenum particles induced severe osteolysis accompanied by marked suppression of a master redox transcriptional factor NRF2 (Nuclear factor erythroid derived 2-related factor 2). Nfe2l2 knockout mice treated with TiPs developed worse osteolytic alterations compared with wild-type mice.

View Article and Find Full Text PDF

Osteoarthritis (OA), in which M1 macrophage polarization in the synovium exacerbates disease progression, is a major cause of cartilage degeneration and functional disabilities. Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported. Here, we report that SHP099, as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2 (SHP2), attenuated osteoarthritis progression by inhibiting M1 macrophage polarization.

View Article and Find Full Text PDF

Background: Cartilage repair has been a challenge in the field of orthopaedics for decades, highlighting the significance of investigating potential therapeutic drugs. In this study, we explored the effect of the SHP2 inhibitor SHP099, a small-molecule drug, on cartilage repair.

Methods: Human synovial mesenchymal stem cells (SMSCs) were isolated, and their three-way differentiation potential was examined.

View Article and Find Full Text PDF

Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease with few treatment options. The pathogenesis of OA is characterized by sustained inflammation, oxidative stress and chondrocyte apoptosis that eventually lead to cartilage degradation and joint dysfunction. In the present study, we identified a synthetic triterpenoid CDDO-Im(1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole) as an activator of Nrf2 (nuclear factor erythroid 2-related factor 2) that displayed strong anti-OA effects.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are well known for their multi-directional differentiation potential and are widely applied in cartilage and bone disease. Synovial mesenchymal stem cells (SMSCs) exhibit a high proliferation rate, low immunogenicity, and greater chondrogenic differentiation potential. Microtubule (MT) plays a key role in various cellular processes.

View Article and Find Full Text PDF

Joint replacement surgery is one of the orthopedic surgeries with high successful rates; however, wear debris generated from prostheses can ultimately lead to periprosthetic osteolysis and failure of the implant. The implant-derived particulate debris such as ultrahigh molecular weight polyethylene (UHMWPE) can initiate the local immune response and recruit monocytic cells to phagocytose particles for generating reactive oxygen species (ROS). ROS induces osteoclastogenesis and macrophages to secrete cytokines which ultimately promote the development of osteolysis.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology.

View Article and Find Full Text PDF