Introduction: Ventricular arrhythmia is commonly provoked by acute cardiac ischemia through sympathetic exaggeration and is often resistant to anti-arrhythmic therapies. Thoracic epidural anesthesia has been reported to terminate fatal ventricular arrhythmia; however, its underlying mechanism is unknown.
Methods: Rats were randomly divided into four groups: sham, sham plus bupivacaine, ischemia/reperfusion (IR), and IR plus bupivacaine groups.
Framework nucleic acids (FNAs) of various morphologies, designed using the precise and programmable Watson-Crick base pairing, serve as carriers for biomolecule delivery in biology and biomedicine. However, the impact of their shape, size, concentration, and the spatial presentation of cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) on immune activation remains incompletely understood. In this study, representative FNAs with varying morphologies are synthesized to explore their immunological responses.
View Article and Find Full Text PDFThe successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc.
View Article and Find Full Text PDFBackground And Objectives: Spinal cord stimulation can prevent myocardial ischemia and reperfusion arrhythmias, but the relevant neurons and mechanisms remain unknown. Thus, this study applied optogenetic techniques to selectively activate glutamatergic neurons at the thoracic spinal cord (T1 segment) for examining the anti-arrhythmia effects during acute myocardial ischemic-reperfusion.
Methods: Adeno-associated viruses (AAVs) carrying channelrhodopsin-2 (ChR2, a blue-light sensitive ion channel) CaMKIIα-hChR2(H134R) or empty vector were injected into the dorsal horn of the T1 spinal cord.
The effects of polystyrene nanoplastics (PSNPs) on the physiological and molecular metabolism of corn seedlings were examined by treating corn (Zea mays L.) seedlings with 100, 300, and 500 nm diameter PSNPs and examining plant photosynthetic characteristics, antioxidant enzyme systems, and molecular metabolism. After 15 days of exposure to PSNPs with different particle sizes (50 mg·L), the photosynthetic characteristics of the plant remained stable, and the maximum photochemical quantum yield (Fv/Fm) and non-photochemical quenching coefficient (NPQ) had no significant effects.
View Article and Find Full Text PDFPolyethylene film is the most widely used plastic film in agricultural production activities, and its depolymerization products are mainly polyethylene-particles (PE-particles) of different molecular weights. However, the impact of the molecular weights of the PE-particles on soil-crop microenvironment has not been elucidated. In this study, a potted microcosmic simulation system was used to evaluate the impact of low, medium and high molecular weight PE-particles on soil metabolism, microbial community structure, and crop growth.
View Article and Find Full Text PDF