Publications by authors named "Zhongxu Lian"

In nature, many species commonly evolve specific functional surfaces to withstand harsh external environments. In particular, structured wettability of surfaces has attracted tremendous interest due to its great potential in antifogging and anti-icing properties. is a resistant low-temperature (-18 °C) plant with superhydrophobicity and ice resistivity behaviors.

View Article and Find Full Text PDF

Slippery liquid-infused surfaces (SLISs) are developed as a potential alternative to superhydrophobic surfaces (SHSs) to resolve the issues of poor durability in corrosion protection and wear resistance. In this work, we used a simple laser processing technology to prepare a SLIS on the aluminum alloy (7075) surface. The superhydrophobicities of the modified surface and the oil film formed by liquid injection make the corrosive medium difficult to directly contact the surface and thus have a significant effect on corrosion resistance.

View Article and Find Full Text PDF

In this study, a simple method without any additional chemical modification is proposed to fabricate underoil superhydrophobic surfaces with micro- and nano-hierarchical structures using a nanosecond laser system. The fabricated surfaces exhibited extreme superhydrophobicity and underoil superhydrophobicity with high contact angles of 153.8 ± 1.

View Article and Find Full Text PDF

Design and fabrication of smart materials with reversible wettability for oil-water separation have attracted worldwide attention due to the increasingly serious water pollution problem. In this study, a rough oxide coating with micro/nanoscale structures is developed on the 304 stainless steel mesh (SSM) by laser ablation. The smart surface with ethanol immersion and natural drying treatments shows the wetting conversion between underwater superoleophobicity and superhydrophobicity.

View Article and Find Full Text PDF

The slippery liquid infused porous surface has developed into a potential technology to solve the problem of poor durability in corrosion resistance. Herein, a kind of slippery liquid infused porous surface is created on 7075 aluminum alloy by wire electrical discharge machining for corrosion resistant applications. The hardness of the constructed porous microstructure is similar to the aluminum alloy substrate material, which ensures the stability of the slippery liquid infused porous surface.

View Article and Find Full Text PDF

Many biological surfaces with the multi-scale microstructure show obvious anisotropic wetting characteristics, which have many potential applications in microfluidic systems, biomedicine, and biological excitation systems. However, it is still a challenge to accurately prepare a metal microstructured surface with multidirectional anisotropy using a simple but effective method. In this paper, inspired by the microstructures of rice leaves and butterfly wings, wire electrical discharge machining was used to build dual-level (submillimeter/micrometer) periodic groove structures on the surface of titanium alloy, and then a nanometer structure was obtained after alkali-hydrothermal reaction, forming a three-level (submillimeter/micrometer/nanometer) structure.

View Article and Find Full Text PDF

In this work, the localized electrochemical micro additive manufacturing technology based on the FluidFM (fluidic force microscope) has been introduced to fabricate micro three-dimensional overhang metal structures at sub-micron resolution. It breaks through the localized deposition previously achieved by micro-anode precision movement, and the micro-injection of the electrolyte is achieved in a stable electric field distribution. The structure of electrochemical facilities has been designed and optimized.

View Article and Find Full Text PDF

In this work, the bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property were successfully demonstrated on the nanosecond laser-structured titanium surfaces. Titanium materials were first transformed to be superhydrophobic after nanosecond laser ablation and low-temperature annealing treatments, showing oleophilicity/aerophilicity in water. If the surfaces were prewetted with absolute ethanol and then immersed into water, the surfaces showed superoleophobicity/superaerophobicity.

View Article and Find Full Text PDF

Reducing the contact time of a water droplet on non-wetting surfaces has great potential in the areas of self-cleaning and anti-icing, and gradually develops into a hot issue in the field of wettability surfaces. However, the existing literature on dynamic behavior of water drops impacting on superhydrophobic surfaces with various structural shapes is insufficient. Inspired by the microstructure of lotus leaf and rice leaf, dual-level and three-level structures on plane and convex surfaces were successfully fabricated by wire electrical discharge machining on aluminum alloy.

View Article and Find Full Text PDF

Materials with special wettability have drawn considerable attention especially in the practical application for the separation and recovery of the oily wastewater, whereas there still remain challenges of the high-cost materials, significant time, and complicated production equipment. Here, a simple method to fabricate the underwater superoleophobic and underoil superhydrophobic brass mesh via the nanosecond laser ablation is reported for the first time, which provided the micro-/nanoscale hierarchical structures. This mesh is superhydrophilic and superoleophilic in air but superoleophobic under water and superhydrophobic under oil.

View Article and Find Full Text PDF