Moho topography yields insights into the evolution of the lithosphere and the strength of the lower crust. The Moho reflected phase (PmP) samples this key boundary and may be used in concert with the first arriving P phase to infer crustal thickness. The densely sampled station coverage of distributed acoustic sensing arrays allows for the observation of PmP at fine-scale intervals over many kilometers with individual events.
View Article and Find Full Text PDFVadose zone soil moisture is often considered a pivotal intermediary water reservoir between surface and groundwater in semi-arid regions. Understanding its dynamics in response to changes in meteorologic forcing patterns is essential to enhance the climate resiliency of our ecological and agricultural system. However, the inability to observe high-resolution vadose zone soil moisture dynamics over large spatiotemporal scales hinders quantitative characterization.
View Article and Find Full Text PDFThe Lithosphere-Asthenosphere Boundary (LAB) beneath oceanic plates is generally imaged as a sharp seismic velocity reduction, suggesting the presence of partial melts. However, the fate of a melt-rich LAB is unclear after these plates descend into the mantle at subduction zones. Recent geophysical studies suggest its persistence with down-going old and cold slabs, but whether or not it is commonly present remains unclear, especially for young and warm slabs such as in the Cascadia subduction zone.
View Article and Find Full Text PDFDistributed Acoustic Sensing (DAS) is an emerging technology for earthquake monitoring and subsurface imaging. However, its distinct characteristics, such as unknown ground coupling and high noise level, pose challenges to signal processing. Existing machine learning models optimized for conventional seismic data struggle with DAS data due to its ultra-dense spatial sampling and limited manual labels.
View Article and Find Full Text PDFGeophysical characterization of calderas is fundamental in assessing their potential for future catastrophic volcanic eruptions. The mechanism behind the unrest of Long Valley Caldera in California remains highly debated, with recent periods of uplift and seismicity driven either by the release of aqueous fluids from the magma chamber or by the intrusion of magma into the upper crust. We use distributed acoustic sensing data recorded along a 100-kilometer fiber-optic cable traversing the caldera to image its subsurface structure.
View Article and Find Full Text PDFRupture imaging of megathrust earthquakes with global seismic arrays revealed frequency-dependent rupture signatures, but the role of high-frequency radiators remains unclear. Similar observations of the more abundant crustal earthquakes could provide critical constraints but are rare without ultradense local arrays. Here we use distributed acoustic sensing technology to image the high-frequency earthquake rupture radiators.
View Article and Find Full Text PDFEarthquake focal mechanisms provide critical in-situ insights about the subsurface faulting geometry and stress state. For frequent small earthquakes (magnitude< 3.5), their focal mechanisms are routinely determined using first-arrival polarities picked on the vertical component of seismometers.
View Article and Find Full Text PDFMantle viscosity plays a key role in the Earth's internal dynamics and thermal history. Geophysical inferences of the viscosity structure, however, have shown large variability depending on the types of observables used or the assumptions imposed. Here, we study the mantle viscosity structure by using the postseismic deformation following a deep (approximately 560 km) earthquake located near the bottom of the upper mantle.
View Article and Find Full Text PDFExtreme temperature and pressure conditions on the surface of Venus present formidable technological challenges against performing ground-based seismology. Efficient coupling between the Venusian atmosphere and the solid planet theoretically allows the study of seismically generated acoustic waves using balloons in the upper atmosphere, where conditions are far more clement. However, earthquake detection from a balloon has never been demonstrated.
View Article and Find Full Text PDFSeafloor geophysical instrumentation is challenging to deploy and maintain but critical for studying submarine earthquakes and Earth's interior. Emerging fiber-optic sensing technologies that can leverage submarine telecommunication cables present an opportunity to fill the data gap. We successfully sensed seismic and water waves over a 10,000-kilometer-long submarine cable connecting Los Angeles, California, and Valparaiso, Chile, by monitoring the polarization of regular optical telecommunication channels.
View Article and Find Full Text PDFMore than 90% of the energy trapped on Earth by increasingly abundant greenhouse gases is absorbed by the ocean. Monitoring the resulting ocean warming remains a challenging sampling problem. To complement existing point measurements, we introduce a method that infers basin-scale deep-ocean temperature changes from the travel times of sound waves that are generated by repeating earthquakes.
View Article and Find Full Text PDFSparse seismic instrumentation in the oceans limits our understanding of deep Earth dynamics and submarine earthquakes. Distributed acoustic sensing (DAS), an emerging technology that converts optical fiber to seismic sensors, allows us to leverage pre-existing submarine telecommunication cables for seismic monitoring. Here we report observations of microseism, local surface gravity waves, and a teleseismic earthquake along a 4192-sensor ocean-bottom DAS array offshore Belgium.
View Article and Find Full Text PDFA nearly 20-year hiatus in major seismic activity in southern California ended on 4 July 2019 with a sequence of intersecting earthquakes near the city of Ridgecrest, California. This sequence included a foreshock with a moment magnitude ( ) of 6.4 followed by a 7.
View Article and Find Full Text PDFThe Pawnee M5.8 earthquake is the largest event in Oklahoma instrument recorded history. It occurred near the edge of active seismic zones, similar to other M5+ earthquakes since 2011.
View Article and Find Full Text PDFEarthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
September 2014
Objective: To study the effects of (E)-2-(4-bromophenyl)-1-(3, 4-dihydroxyphenyl) ethanone oxime (BDEO) on the proliferation and activation of the mice' s splenic lymphocytes and the peripheral blood lymphocytes induced by Concanavalin A (Con A) in vitro and in vivo, and its molecular mechanism.
Methods: During the lymphocyte proliferation and activation induced by Con A in vitro, MTT and cell counting were used to detect the transformation rates and survival rates of lymphocytes, and ELISA was used to measure the activity of caspase-9; moreover, the levels of Bax, Bcl-2 and caspase-3 were determined by Western blot, in order to observe the effects of BDEO on cell proliferation and activation. The effects of administration of Con A [15 mg/(kg x d)] and BDEO [(3, 6 mg/(kg x d)] by intraperitoneal injection on transformation rates of spleen cells and peripheral blood lymphocyte, as well as phagocytosis rate of peritoneal macrophages in mice were also observed in vivo.
Earthquake rupture speeds exceeding the shear-wave velocity have been reported for several shallow strike-slip events. Whether supershear rupture also can occur in deep earthquakes is unclear, because of their enigmatic faulting mechanism. Using empirical Green's functions in both regional and teleseismic waveforms, we observed supershear rupture during the 2013 moment magnitude (M(w)) 6.
View Article and Find Full Text PDF