Publications by authors named "Zhongwei Liang"

Hard-brittle materials are widely used in the optics, electronics, and aviation industries, but their high hardness and brittleness make it challenging for traditional processing methods to achieve high efficiency and superior surface quality. This study aims to investigate the application of ultrasonic local resonant grinding to sapphire to improve the efficiency and meet the requirements for the optical window in the surface roughness of the material. The resonant frequency of a piezoelectric ultrasonic vibration system and the vibration amplitude of a grinding head's working face were simulated and tested, respectively.

View Article and Find Full Text PDF

The Ti6Al4V alloy has been widely used in aerospace equipment and medical devices. However, the poor wear resistance of the Ti6Al4V alloy hinders its further engineering application. In this study, the ultrasonic strengthening grinding process (USGP) and laser texturing process were employed to enhance the wear resistance of Ti6Al4V alloy.

View Article and Find Full Text PDF

A metal atomizing sheet with a group of micro-tapered holes is the core constituent of a piezoelectric atomizer. However, the diameters of large-end and small-end micro-tapered holes in industrial applications deviate from the design values by 15.25% and 15.

View Article and Find Full Text PDF

This study used the strengthening grinding process (SGP) to treat the surface of 30CrMnSiA bearing steels. The effect of the jet angle of SGP on the tribological properties of 30CrMnSiA bearing steels under lubrication was investigated. The principle of enhancing wear resistance of 30CrMnSiA bearing steel ascribed to SGP was discussed in detail.

View Article and Find Full Text PDF

Selective laser melted (SLM) 316L stainless steel (SS) has been widely employed in the fields of designing and manufacturing components with complex shapes and sizes. However, the low yield strength, low ultimate tensile stress, and low hardness of SLM 316L SS components hinder its further application. In this work, the strengthening grinding process (SGP) was used to enhance the mechanical properties of SLM 316L SS.

View Article and Find Full Text PDF

In the present paper, the effect of mechanical ball milling time on the fretting wear of GCr15 steel balls at different displacement amplitudes is investigated. TiC powder coating was fabricated on the surface of GCr15 steel balls using various process times, and the fretting wear tests were conducted on an AISI 52100 steel disk with the applied force of 80 N. Additionally, various displacement amplitudes (10 μm, 20 μm, and 60 μm) were selected.

View Article and Find Full Text PDF

As wireless rechargeable sensor networks (WRSNs) are gradually being widely accepted and recognized, the security issues of WRSNs have also become the focus of research discussion. In the existing WRSNs research, few people introduced the idea of pulse charging. Taking into account the utilization rate of nodes' energy, this paper proposes a novel pulse infectious disease model (SIALS-P), which is composed of susceptible, infected, anti-malware and low-energy susceptible states under pulse charging, to deal with the security issues of WRSNs.

View Article and Find Full Text PDF

With the development of wireless sensor networks (WSNs), energy constraints and network security have become the main problems. This paper discusses the dynamic of the Susceptible, Infected, Low-energy, Susceptible model under pulse charging (SILS-P) in wireless rechargeable sensor networks. After the construction of the model, the local stability and global stability of the malware-free T-period solution of the model are analyzed, and the threshold R0 is obtained.

View Article and Find Full Text PDF

Virus spreading problems in wireless rechargeable sensor networks (WSNs) are becoming a hot topic, and the problem has been studied and discussed in recent years. Many epidemic spreading models have been introduced for revealing how a virus spreads and how a virus is suppressed. However, most of them assumed the sensors are not rechargeable sensors.

View Article and Find Full Text PDF

The unmanned aerial vehicle (UAV) route planning problem mainly centralizes on the process of calculating the best route between the departure point and target point as well as avoiding obstructions on route to avoid collisions within a given flight area. A highly efficient route planning approach is required for this complex high dimensional optimization problem. However, many algorithms are infeasible or have low efficiency, particularly in the complex three-dimensional (3d) flight environment.

View Article and Find Full Text PDF

The full-scale static testing of wind turbine blades is an effective means to verify the accuracy and rationality of the blade design, and it is an indispensable part in the blade certification process. In the full-scale static experiments, the strain of the wind turbine blade is related to the applied loads, loading positions, stiffness, deflection, and other factors. At present, researches focus on the analysis of blade failure causes, blade load-bearing capacity, and parameter measurement methods in addition to the correlation analysis between the strain and the applied loads primarily.

View Article and Find Full Text PDF

Video tracking of drug tablet exerts important influences on the efficiency and reliability of its mass production; this topic also becomes a difficult and targeted focus for pharmaceutical production monitory in the past several years due to the high similarity and random distribution of those objectives to be searched for. By measuring the reflective lightness intensity of illumination lightness on tablet surface, reflective lightness intensity matrix was established and demonstrated in the form of grey image, presenting its shape topology and topography details in return. On this basis, a series of mathematical properties for describing reflective lightness intensity images were proposed, thereafter a set of fuzzy recognition system and its identification rules can be employed to classify those moving tablets with inputted image properties, which facilitates the determination of their instantaneous coordinate positions on given image frame accordingly.

View Article and Find Full Text PDF

A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp(3) C-H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.

View Article and Find Full Text PDF

It is obvious that tablet image tracking exerts a notable influence on the efficiency and reliability of high-speed drug mass production, and, simultaneously, it also emerges as a big difficult problem and targeted focus during production monitoring in recent years, due to the high similarity shape and random position distribution of those objectives to be searched for. For the purpose of tracking tablets accurately in random distribution, through using surface fitting approach and transitional vector determination, the calibrated surface of light intensity reflective energy can be established, describing the shape topology and topography details of objective tablet. On this basis, the mathematical properties of these established surfaces have been proposed, and thereafter artificial neural network (ANN) has been employed for classifying those moving targeted tablets by recognizing their different surface properties; therefore, the instantaneous coordinate positions of those drug tablets on one image frame can then be determined.

View Article and Find Full Text PDF

Assessing dry weight accurately is crucial in providing effective and safe haemodialysis. Biases towards dry weight assessment may bring a series of dialysis complications. This study introduces an online detection technique of relative blood volume (RBV) based on ultrasound, which analyzes the correlation between changes in blood density and sound speed.

View Article and Find Full Text PDF

Because the application of surface fitting algorithms exerts a considerable fuzzy influence on the mathematical features of kinetic energy distribution, their relation mechanism in different external conditional parameters must be quantitatively analyzed. Through determining the kinetic energy value of each selected representative position coordinate point by calculating kinetic energy parameters, several typical algorithms of complicated surface fitting are applied for constructing microkinetic energy distribution surface models in the objective turbulence runner with those obtained kinetic energy values. On the base of calculating the newly proposed mathematical features, we construct fuzzy evaluation data sequence and present a new three-dimensional fuzzy quantitative evaluation method; then the value change tendencies of kinetic energy distribution surface features can be clearly quantified, and the fuzzy performance mechanism discipline between the performance results of surface fitting algorithms, the spatial features of turbulence kinetic energy distribution surface, and their respective environmental parameter conditions can be quantitatively analyzed in detail, which results in the acquirement of final conclusions concerning the inherent turbulence kinetic energy distribution performance mechanism and its mathematical relation.

View Article and Find Full Text PDF

The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail.

View Article and Find Full Text PDF

The interactions between Hela cells and silver nanoparticles (AgNPs) have been studied by scanning electrochemical microscopy (SECM) with both IrCl(6)(2-/3-) and Fe(CN)(6)(3-/4-) as the dual mediators. IrCl(6)(2-), which can be produced in situ and react with AgNPs, is used as the mediator between the AgNPs on the cells and the SECM tip. Another redox couple, Fe(CN)(6)(3-/4-), which has a similar hydrophilicity to IrCl(6)(2-/3-), but cannot react with AgNPs, is also employed for the contrast experiments.

View Article and Find Full Text PDF

An electrochemical DNAzyme sensor for sensitive and selective detection of lead ion (Pb(2+)) has been developed, taking advantage of catalytic reactions of a DNAzyme upon its binding to Pb(2+) and the use of DNA-Au bio-bar codes to achieve signal enhancement. A specific DNAzyme for Pb(2+) is immobilized onto an Au electrode surface via a thiol-Au interaction. The DNAzyme hybridizes to a specially designed complementary substrate strand that has an overhang, which in turn hybridizes to the DNA-Au bio-bar code (short oligonucleotides attached to 13 nm gold nanoparticles).

View Article and Find Full Text PDF