We present experimental evidence of electronic and optical interlayer resonances in graphene van der Waals heterostructure interfaces. Using the spectroscopic mode of a low-energy electron microscope (LEEM), we characterized these interlayer resonant states up to 10 eV above the vacuum level. Compared with nontwisted, AB-stacked bilayer graphene (AB BLG), an ≈0.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
November 2009
Biopolyesters of polyhydroxyalkanoates (PHAs), including poly-3-hydroxybutyrate (PHB), co-polyester of 3-hydroxybutyrate and 4-hydroxybutyrate (P3HB4HB), and co-polyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) have been well investigated for their biocompatibility. For in vivo application, it is very important that the degradation products of PHAs, especially the oligomers, are not harmful to the cells and surrounding tissues. In this study, in vitro effects of oligo(3-hydroxybutyrate) (OHB), oligo(3-hydroxybutyrate-co-4-hydroxybutyrate) (O3HB4HB) and oligo(3-hydroxybutyrate-co-3-hydroxyhexanoate) (OHBHHx) on growth and differentiation of the murine beta cell line NIT-1 were investigated.
View Article and Find Full Text PDFThe cellular responses to polyhydroxyalkanoates (PHA) degradation products oligo-hydroxyalkanoates (OHAs) are very important factors that control the biocompatibility of these polymers when they are used in tissue-engineering applications. In this study, oligo(3-hydroxybutyrate) (OHB, Mn 2000), oligo(3-hydroxybutyrate-co-4-hydroxybutyrate) (O3HB4HB, Mn 2100, 6 mol% 4HB), oligo(3-hydroxybutyrate-co-3-hydroxyhexanoate) (OHBHHx, Mn 2800, 12 mol% 3HHx) and medium-chain-length oligo(3-hydroxyalkanoates) (OmclHAs, Mn 2300, 2 mol% 3-hydroxyhexanoate (3HHx), 25 mol% 3-hydroxyoctanoate, 71 mol% 3-hydroxydecanoate and 3 mol% 3-hydroxydodecanoate) were prepared as insoluble particles in aqueous solution. Liposomes were employed to encapsulate OHAs and facilitate their transfer into the cytosol.
View Article and Find Full Text PDF