Background: Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies.
View Article and Find Full Text PDFThe purpose of this study was to comprehensively analyze the genetic diversity of the Pekin duck conserved population with five generations and to evaluate the effectiveness of the current conservation strategy. In total, 277 Pekin duck conserved individuals and 40 Mallards as ancestral controls were collected. Each duck was sequenced at about 10X whole-genome coverage, while over 7.
View Article and Find Full Text PDFBackground: Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood.
View Article and Find Full Text PDFA set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α.
View Article and Find Full Text PDFAngel wing is a developmental wing deformity that can influence breeding and reproduction in the commercial duck industry. The nutrition foundation of angel wing trait was initially explored, but the genetic basic remains poorly understood. In this study, we identified candidate genes and single-nucleotide polymorphisms (SNPs) associated with angel wing trait in Pekin ducks using a genome-wide association study (GWAS) and selective sweep analysis.
View Article and Find Full Text PDFAdipose tissues have a central role in organisms, and adipose content is a crucial economic trait of poultry. Pekin duck is an ideal model to study the mechanism of abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis and deposition. Alternative splicing contributes to functional diversity in abdominal and subcutaneous adipose.
View Article and Find Full Text PDFDomestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
May 2021
Background: A considerable number of muscle development-related genes were differentially expressed in the early stage of avian adipocyte differentiation. However, the functions of them in adipocyte differentiation remain largely known. In this study, the myoblast determination protein 1 (MYOD1) was selected as a representative of muscle development.
View Article and Find Full Text PDFDuck egg quality improvement is an essential target for Asian poultry breeding. In total, 15 RNA-Seq libraries (magnum, isthmus, and uterus at two different physiological states) were sequenced from 48 weeks old Pekin ducks. De novo assembly and annotation methods were utilized to generate new reference transcripts.
View Article and Find Full Text PDFDuck (Anas platyrhynchos), one of the most economically important waterfowl, is an ideal model for studying the immune protection mechanism of birds. An incomplete duck reference genome and very limited availability of full-length cDNAs has hindered the identification of alternatively spliced transcripts and slowed down many basic studies in ducks. We applied PacBio Iso-Seq technologies to multiple tissues from duck for use in transcriptome sequencing.
View Article and Find Full Text PDFBackground: Pekin duck is an important animal model for its ability for fat synthesis and deposition. However, transcriptional dynamic regulation of adipose differentiation driven by complex signal cascades remains largely unexplored in this model. This study aimed to explore adipogenic transcriptional dynamics before (proliferation) and after (differentiation) initial preadipocyte differentiation in ducks.
View Article and Find Full Text PDFThe avian egg is a valuable model for the calcitic biomineralization process as it is the fastest calcification process occurring in nature and is a clear example of biomineralization. In this study, iTRAQ MS/MS is used to detect and study for the first time: 1) the overall duck eggshell proteome; 2) regional differences in the proteome between the inner and outer portions of the duck eggshell. The new reference protein datasets allow us to identify 179 more eggshell proteins than solely using the current release of Ensembl duck annotations.
View Article and Find Full Text PDFThe avian embryo develops within a specialized biological container (eggshell) that contains crucial nutritional compartments (albumen, yolk). We analyzed the transcriptome of ovary and three segments of oviduct, including magnum, isthmus and uterus in the chicken during egg formation. RNA-Seq libraries (42 in total) for ovary and three different parts of the oviduct were sequenced for two different phases of egg formation.
View Article and Find Full Text PDFBackground: Argument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation. High quality-reference gene sets are necessary for precisely evaluating gene gain and loss. It is essential to explore new reference transcripts from large-scale de novo assembled transcriptomes to recover the potential hidden genes in avian genomes.
View Article and Find Full Text PDF