It is demonstrated that higher-order patterns beyond pairwise relations can significantly enhance the learning capability of existing graph-based models, and simplex is one of the primary form for graphically representing higher-order patterns. Predicting unknown (disappeared) simplices in real-world complex networks can provide us with deeper insights, thereby assisting us in making better decisions. Nevertheless, previous efforts to predict simplices suffer from two issues: (i) they mainly focus on 2- or 3-simplices, and there are few models available for predicting simplices of arbitrary orders, and (ii) they lack the ability to analyze and learn the features of simplices from the perspective of dynamics.
View Article and Find Full Text PDF