Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC).
View Article and Find Full Text PDFDysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF).
View Article and Find Full Text PDFSci China Life Sci
November 2023
Aplastic anemia (AA) is a life-threatening disease characterized by bone marrow (BM) failure and pancytopenia. As an important component of the BM microenvironment, endothelial cells (ECs) play a crucial role in supporting hematopoiesis and regulating immunity. However, whether impaired BM ECs are involved in the occurrence of AA and whether repairing BM ECs could improve hematopoiesis and immune status in AA remain unknown.
View Article and Find Full Text PDFBone marrow (BM) endothelial progenitor cell (EPC) damage of unknown mechanism delays the repair of endothelial cells (EC) and recovery of hematopoiesis after chemo-radiotherapy. We found increased levels of the glycolytic enzyme PFKFB3 in the damaged BM EPC of patients with poor graft function, a clinical model of EPC damage-associated poor hematopoiesis after allogeneic hematopoietic stem cell transplantation. Moreover, in vitro the glycolysis inhibitor 3-(3-pyridinyl)- 1-(4-pyridinyl)-2-propen-1-one (3PO) alleviated the damaged BM EPC from patients with poor graft function.
View Article and Find Full Text PDFBackground: Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective haematopoiesis and immune deregulation. Emerging evidence has shown the effect of bone marrow (BM) endothelial progenitor cells (EPCs) in regulating haematopoiesis and immune balance. However, the number and functions of BM EPCs in patients with different stages of MDS remain largely unknown.
View Article and Find Full Text PDFSignal Transduct Target Ther
June 2021
Dysfunctional megakaryopoiesis hampers platelet production, which is closely associated with thrombocytopenia (PT). Macrophages (MФs) are crucial cellular components in the bone marrow (BM) microenvironment. However, the specific effects of M1 MФs or M2 MФs on regulating megakaryocytes (MKs) are largely unknown.
View Article and Find Full Text PDFBackground: Endothelial cells (ECs) function as an instructive platform to support haematopoietic stem cell (HSC) homeostasis. Our recent studies found that impaired bone marrow (BM) ECs are responsible for the defective haematopoiesis in patients with poor graft function (PGF), which is characterised by pancytopenia post-allotransplant. Although activated autophagy was reported to benefit ECs, whether EC autophagy plays a critical role in supporting HSCs and its effect on PGF patients post-allotransplant remain unclear.
View Article and Find Full Text PDFBackground: The renal tubules, which have distant metabolic features and functions in different segments, reabsorb >99% of approximately 180 l of water and 25,000 mmol of Na daily. Defective metabolism in renal tubules is involved in the pathobiology of kidney diseases. However, the mechanisms underlying the metabolic regulation in renal tubules remain to be defined.
View Article and Find Full Text PDFGraft-versus-host disease (GVHD) is a major complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT) that is frequently associated with bone marrow (BM) suppression, and clinical management is challenging. BM endothelial progenitor cells (EPCs) play crucial roles in the regulation of haematopoiesis and thrombopoiesis. However, little is known regarding the functional roles of BM EPCs in acute GVHD (aGVHD) patients.
View Article and Find Full Text PDFPoor graft function (PGF) is a severe complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT). Murine studies have demonstrated that effective haematopoiesis depends on the specific bone marrow (BM) microenvironment. Increasing evidence shows that BM macrophages (MФs), which constitute an important component of BM immune microenvironment, are indispensable for the regulation of haematopoietic stem cells (HSCs) in the BM.
View Article and Find Full Text PDFPoor graft function (PGF) is a life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by defective hematopoiesis. Mesenchymal stem cells (MSCs) have been shown to support hematopoiesis, but little is known about the role of MSCs in the pathogenesis of PGF. In the current prospective case-control study, we evaluated whether the number and function of bone marrow (BM) MSCs in PGF patients differed from those in good graft function (GGF) patients.
View Article and Find Full Text PDFA1CF (apobec-1 complementation factor) acts as a component of the apolipoprotein-B messenger RNA editing complex. Previous researches mainly focused on its post-transcriptional cytidine to uridine RNA editing. However, few study reported its role in progression of breast carcinoma cells.
View Article and Find Full Text PDFThe transforming growth factor-β (TGFβ) family signaling pathways play an important role in regulatory cellular networks and exert specific effects on developmental programs during embryo development. However, the function of TGFβ signaling pathways on the early kidney development remains unclear. In this work, we aim to detect the underlying role of TGFβ type II receptor (TβRII) in vitro, which has a similar expression pattern as the crucial regulator during early kidney development.
View Article and Find Full Text PDFGene Expr Patterns
November 2016
Tetratricopeptide repeat domain 36 (Ttc36), whose coding protein belongs to tetratricopeptide repeat (TPR) motif family, has not been studied extensively. We for the first time showed that Ttc36 is evolutionarily conserved across mammals by bioinformatics. Rabbit anti-mouse Ttc36 polyclonal antibody was generated by injecting synthetic full-length peptides through "antigen intersection" strategy.
View Article and Find Full Text PDFNephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos.
View Article and Find Full Text PDFApobec-1 complementation factor (A1CF) is a heterogeneous nuclear ribonuceloprotein (hnRNP) and mediates apolipoprotein-B mRNA editing. A1CF can promote the regeneration of the liver by post-transcriptionally stabilizing Interleukin-6 (IL-6) mRNA. It also contains two transcriptional variants-A1CF64 and A1CF65, distinguished by the appearance of a 24-nucleotide motif which contributes to the corresponding eight-amino acid motif of EIYMNVPV.
View Article and Find Full Text PDFApobec-1 complementation factor (A1CF) is a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family, which participates in site-specific posttranscriptional RNA editing of apolipoprotein B (apoB) transcript. The posttranscriptional editing of apoB mRNA by A1CF in the small intestine is required for lipid absorption. Apart from the intestine, A1CF mRNA is also reported to be highly expressed in the kidneys.
View Article and Find Full Text PDFAccumulating evidence demonstrated that miRNAs are highly involved in kidney fibrosis and Epithelial-Eesenchymal Transition (EMT), however, the mechanisms of miRNAs in kidney fibrosis are poorly understood. In this work, we identified that miR542-3p could promote EMT through down-regulating bone morphogenetic protein 7 (BMP7) expression by targeting BMP7 3'UTR. Firstly, real-time PCR results showed that miR542-3p was significantly up-regulated in kidney fibrosis in vitro and in vivo.
View Article and Find Full Text PDFMicroRNAs (miRNAs) possess an important regulating effect among numerous renal diseases, while their functions in the process of epithelial-to-mesenchymal transition (EMT) after podocyte injury remain unclear. The purpose of our study is to identify the potential functions of miR-30a in EMT of podocytes and explore the underlying mechanisms of miR-30a in the impaired podocytes. The results revealed that downregulation of miR-30a in podocyte injury animal models and patients, highly induced the mesenchymal markers of EMT including Collagen I, Fibronectin and Snail.
View Article and Find Full Text PDFIncreasingly recognized importance has been assumed for microRNA (miRNA) in the regulation of the delicate balance of gene expression. In our study, we aimed to explore the regulation role of miR181c towards Six2 in metanephric mesenchyme (MM) cells. Bioinformatics analysis, luciferase assay and semi-quantitative real-time (RT) PCR, subsequently RT PCR, Western blotting, 5-ethynyl-2'-deoxyuridine cell proliferation assay, Cell Counting Kit-8 assay, immunofluorescence and flow cytometry, were employed to verify the modulation function of miR181c on Six2 in the mK3 MM cell line that is one kind of MM cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2013
MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development.
View Article and Find Full Text PDF