Publications by authors named "Zhongsheng Wu"

The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P-AKT signaling in human cancer cells containing p110α mutations under basal conditions.

View Article and Find Full Text PDF

Formoterol, a β2-adrenergic receptor (β2AR) agonist, shows promise in various diseases, but its effectiveness in Parkinson's disease (PD) is debated, with unclear regulation of mitochondrial homeostasis. This study employed a cell model featuring mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) variants associated with familial parkinsonism, demonstrating mitochondrial dysfunction and dynamic imbalance, exploring the therapeutic effects and underlying mechanisms of formoterol. Results revealed that 24-h formoterol treatment enhanced cell proliferation, viability, and neuroprotection against oxidative stress.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are a class of phytohormones that regulate plant growth and development. In previous studies, we cloned and identified PROTEIN PHOSPHATASE WITH KELCH-LIKE1 (OsPPKL1) as the causal gene for the quantitative trait locus GRAIN LENGTH3 (qGL3) in rice (Oryza sativa). We also showed that qGL3/OsPPKL1 is mainly located in the cytoplasm and nucleus and negatively regulates BR signaling and grain length.

View Article and Find Full Text PDF

The currently widely used CRISPR-Cas9 genome editing technology enables the editing of target genes (knock-out or knock-in) with high accuracy and efficiency. Guided by the small guide RNA, the Cas9 nuclease induces a DNA double-strand break at the targeted genomic locus. The DNA double-strand break can be repaired by the homology-directed repair pathway in the presence of a repair template.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs), produced by metal ions coordinated to organic linkers, have attracted increasing attention in recent years. For the utilization in MOFs in numerous applications, achieving positioned MOF growth on surfaces is essential to fabricate multiple-functional devices. We develop a novel miniaturized method to realize surface-tension-confined assembly of HKUST-1 in femtoliter droplet arrays.

View Article and Find Full Text PDF

The hydrothermal preparation of flower-like layered sodium titanate architectures in a weakly alkaline medium is reported. NaCl was used as a morphology-directing agent, and a growth mechanism was proposed. The hierarchical structure is assembled from one-dimensional nanoribbons and exhibits an excellent removal capacity toward methylene blue (MB).

View Article and Find Full Text PDF

In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Zhongsheng Wu"

  • Recent research by Zhongsheng Wu focuses on the mechanisms of cell signaling in cancer, particularly the spatial organization of the PI3K-AKT pathway in relation to focal adhesions, which are identified as essential hubs for signaling activation in human cancer cells.
  • Wu has also explored the therapeutic potential of formoterol in improving mitochondrial function in Parkinson's disease, demonstrating its ability to enhance cell viability and protect against oxidative stress through modulation of mitochondrial dynamics.
  • Additionally, Wu's work includes the investigation of brassinosteroid signaling in rice, revealing how the protein phosphatase qGL3/OsPPKL1 self-regulates its degradation to influence plant growth and development.*