ACS Appl Mater Interfaces
August 2020
The promising n-Si-based solar cell is constructed for the purpose of realizing hole- and electron-selective passivating contact, using a textured front indium tin oxide/MoO structure and a planar rear a-SiO /poly(Si(n)) structure severally. The simple MoO /n-Si heterojunction device obtains an efficiency of 16.7%.
View Article and Find Full Text PDFIn this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO(In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO/In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope.
View Article and Find Full Text PDFSilver nanowires (AgNWs) networks are promising candidates for the replacement of indium tin oxide (ITO). However, the surface roughness of the AgNWs network is still too high for its application in optoelectronic devices. In this work, we have reduced the surface roughness of the AgNWs networks to 6.
View Article and Find Full Text PDFThe crystal structures of Os2C were extensively investigated using the structure search method from the first-principles calculations. In contrast to the P6 3 /mmc phase previously proposed as the ground state at ambient pressure, an energetically favorable structure with space group P-6m2 was found more stable at ambient condition. The structural stabilities of the new phase are confirmed by the phonon dispersion and elastic constants.
View Article and Find Full Text PDFTiO(2) thin films doped with rare-earth samarium were prepared on a quartz plate by the sol-gel/spin-coating technique. The samples were annealed at 700 °C to 1100 °C, and the Raman spectra of the samples were obtained. Analyses of Raman spectra show that samarium doping can inhibit the anatase-rutile phase transition.
View Article and Find Full Text PDFThe temperature dependence of photoluminescence (PL) spectra of Er-Tm codoped calcium boroaluminate (CABAL) glasses with different dopant concentrations was investigated under 15-298 K, by pumping at 795 nm. The intensities of three band emissions located at 1.46, 1.
View Article and Find Full Text PDF