Publications by authors named "Zhongqiao Sun"

Quantum dots (QDs) of metal sulfides were proven to be excellent cocatalysts in visible-light-driven photocatalytic reactions. Metal organic frameworks (MOFs) possess a 3D porous channel that effectively confines small QDs and preserves their high catalytic activity by preventing their aggregation. In order to precisely construct the ternary metal sulfides of ZnS/ZnInS/InS with well-maintained Zn-AgInS (ZAIS) QDs, an in situ sulfurization combining a subsequent Zn(II)-exchange strategy was employed in this work.

View Article and Find Full Text PDF

Considering the surface affinity of MOFs and separation advantages of polymer membranes, herein, a one-step interface synthesis strategy is used in the construction of Cu-BTC/PVDF hybrid membranes, in which Cu ions and 1,3,5-benzenetricarboxylic acid (HBTC) were dissolved in ionized water and -octanol separately, and polyvinylidene fluoride (PVDF) films were laid at the interface of two immiscible solvents. As a result, Cu-BTC was generated and readily self-assembled inside the PVDF films. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method were used to characterize Cu-BTC/PVDF hybrid membranes, and Congo red (CR) was selected as the target dye to evaluate the surface adsorption activity of the hybrid membranes.

View Article and Find Full Text PDF

Development of binary MOF-on-MOF heterostructures is a research hotspot in MOFs chemistry due to the advantages elicited by a closely connected interface, which may endow more abundant functionality and even broader applications in interface chemistry. A MOF-on-MOF heterostructure was constructed by growth of MIL-88B on the outer surface of UiO-66. The resultant MIL-88B@UiO-66 produced had an interesting flower-like morphology composed of MIL-88B (petal) on tetrahedral UiO-66 (core).

View Article and Find Full Text PDF

The synergistic effects involving surface adsorption and photocatalytic degradation commonly play significant roles in the removal of persistent synthetic organics from wastewater in the case of porous semiconductors. Inspired by the visible-light harvesting advantages of porphyrin-based MOFs, a capsule-like bimetallic porphyrin-based MOF (PCN-222(Ni/Hf)) has been successfully constructed through a facile hydrothermal method. In which, the Hf (IV) ions were exactly bonded to the carboxyl groups substituted on the porphyrin rings, meanwhile the Ni (II) ions were finely bonded to the -N inside the porphyrin rings.

View Article and Find Full Text PDF

MOF/polymer hybrid membranes integrate the surface activity of MOFs and the advantages of PVDF membranes, and can be used as adsorption membranes in the efficient removal of target organics. In this work, a new hybrid membrane of ZIF-67/PVDF with varying ZIF-67 dosages has been fabricated through a facile mechanical blending followed by a lyotropic phase transition. Methods including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), FT-IR analyses and surface hydrophobicity/hydrophilicity measurements are applied to characterize the structure, physicochemical properties and membrane performances.

View Article and Find Full Text PDF

A versatile organic-inorganic hybrid structure makes a metal-organic framework (MOF) an outstanding host for different kinds of guests; in addition, its easy pyrolysis nature has been proven to be useful as precursors in the construction of carbon-based materials with a special porous structure. Herein, a novel porous composite nanostructure of an aminated MIL-53(Al)@carbon nanotube (CNT) has been successfully constructed for the first time based on in situ synthesis combining the pyrolysis of ZIF-67. The resulting composite nanostructure was performed by the means of scanning electron microscopy, Brunauer-Emmett-Teller analysis, typical and high-resolution transmission electronic microscopy, X-ray photoelectron spectroscopy, etc.

View Article and Find Full Text PDF

A series of 2-aryl-4-(3,4,5-trimethoxybenzoyl)-5-substituted-1,2,3-triazoles were designed, synthesized and evaluated for the anticancer activities. Based on the model of DMAM-colchicine-tubulin complex interactions, various saturated nitrogen-containing heterocycles were introduced to the C5-position of 1,2,3-triazol to interact with a tolerant region at the entrance of the binding-pocket and increase the aqueous solubility of the compounds. All designed compounds were concisely synthesized by one-pot oxidative cyclization.

View Article and Find Full Text PDF

Developing novel solid adsorbents with high efficiency and excellent selectivity is always an important target in the removal of toxic metal ions from waste water. In this study, a composite nano-adsorbent NH2-mSiO2@MIL-101(Cr) has been fabricated and applied in the efficient removal of Pb(ii) and Cr(vi) for the first time. The nanocomposites were characterized by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier-transform infrared (FT-IR) spectroscopy and thermal gravimetry analysis (TG).

View Article and Find Full Text PDF