The main purpose of the current work was to develop a new method to evaluate and quantify sixteen polyphenol compounds from tomato fruit using high-performance liquid chromatography (HPLC). The separation of 16 polyphenols from tomato fruit was achieved in < 60 min by using a Waters Symmetry C18 column (250 × 4.6 mm i.
View Article and Find Full Text PDFMelatonin plays a vital role in plant growth and development. In this study, we treated hydroponically grown tomato roots with various concentrations of exogenous melatonin (0, 10, 30, and 50 μmol·L). We utilized root scanning and microscopy to examine alterations in root morphology and cell differentiation and elucidated the mechanism by which melatonin regulates these changes through the interplay with endogenous hormones and relevant genes.
View Article and Find Full Text PDFGrowing pumpkins in controlled environments, such as greenhouses, has become increasingly important due to the potential to optimise yield and quality. However, achieving optimal environmental conditions for pumpkin cultivation requires precise monitoring and control, which can be facilitated by modern sensor technologies. The objective of this study was to determine the optimal placement of sensors to determine the influence of external parameters on the maturity of pumpkins.
View Article and Find Full Text PDFThe content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed.
View Article and Find Full Text PDFDeoxynivalenol (DON), as a widespread Fusarium mycotoxin in cereals, food products, and animal feed, is detrimental to both human and animal health. The liver is not only the primary organ responsible for DON metabolism but also the principal organ affected by DON toxicity. Taurine is well known to display various physiological and pharmacological functions due to its antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFMini Chinese cabbage (Brassica rapa L. ssp. Pekinensis) plays an important role in the supply of summer vegetables on the plateau in western China.
View Article and Find Full Text PDFTip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca) deficiency is the main cause of tip-burn. In order to investigate whether exogenous brassinosteroids (BRs) can alleviate tip-burn induced by calcium (Ca) deficiency and its mechanism, in this study, Ca deficiency in nutrient solution was used to induced tip-burn, and then distilled water and BRs were sprayed on leaves to observe the tip-burn incidence of mini Chinese cabbage.
View Article and Find Full Text PDFMelatonin plays key roles in improving fruit quality and yield by regulating various aspects of plant growth. However, the effects of how melatonin regulates primary and secondary metabolites during fruit growth and development are poorly understood. In this study, the surfaces of tomato fruit were sprayed with different concentrations of melatonin (0, 50, and 100 µmol·L) on the 20th day after anthesis; we used high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS) to determine the changes in primary and secondary metabolite contents during fruit development and measured the activity of sucrose metabolizing enzymes during fruit development.
View Article and Find Full Text PDF5-Aminolevulinic acid (ALA) plays a vital role in promoting plant growth, enhancing stress resistance, and improving fruit yield and quality. In the present study, tomato fruits were harvested at mature green stage and sprayed with 200 mg L ALA on fruit surface. During ripening, the estimation of primary and secondary metabolites, carotenoids, and chlorophyll contents, and the expression levels of key genes involved in their metabolism were carried out.
View Article and Find Full Text PDFAutotoxicity is a key factor that leads to obstacles in continuous cropping systems. Although Si is known to improve plant resistance to biotic and abiotic stresses, little is known about its role in regulating leaf water status, mineral nutrients, nitrogen metabolism, and root morphology of cucumber under autotoxicity stress. Here, we used cucumber seeds ( L.
View Article and Find Full Text PDFA biosynthetic precursor of tetrapyrrol, 5-aminolevulinic acid (ALA), is widely used in agricultural production, as an exogenous regulatory substance that effectively regulates plant growth. Previous studies have shown that heme and chlorophyll accumulate in plants under salt stress, when treated with exogenous ALA. In this study, we explored the regulatory role of heme in plants, by spraying 25 mg L ALA onto the leaves of cucumber seedlings treated with heme synthesis inhibitor (2,2'-dipyridyl, DPD) and heme scavenger (hemopexin, Hx), under 50 mmol L NaCl stress.
View Article and Find Full Text PDFThe 5-aminolevulinic acid (ALA), a new type of plant growth regulator, can relieve the toxicity of cadmium (Cd) to plants. However, its mechanism has not been thoroughly studied. In the study, the roles of ALA have been investigated in the tolerance of Chinese cabbage ( L.
View Article and Find Full Text PDFLight is one of the most important environmental signals in plant growth, development, and stress response. Green light has been proved to enhance plant defense against biotic and/or abiotic stress. To illustrate the effects of green light partially replaced red light and blue light on the plant under drought condition, cucumber ( L.
View Article and Find Full Text PDFToxic stress caused by autotoxins is a common phenomenon for cucumber under monoculture condition. A previous study demonstrated that grafting could enhance the resistance of cucumber to cinnamic acid (CA) stress, but the underlying mechanism behind this enhanced resistance is still unclear. In the present study, we reconfirmed the stronger resistance of grafted rootstock (RG) compared to the non-grafted (NG) cucumber as measured though plant biomass accumulation.
View Article and Find Full Text PDFCinnamic acid (CA), one of the main autotoxins secreted by cucumber roots during continuous cropping, inhibits plant growth and reduces yield. Silicon (Si) is an environmentally friendly element that alleviates abiotic stresses in plants, but the mechanism underlying its resistance to autotoxicity remain unclear. Here, we used 0.
View Article and Find Full Text PDFIn this study, High throughput sequencing was used to analyze the effects of different vegetable rotations on the rhizosphere bacterial diversity and community structure in a substrate that was used for continuous tomato cropping (CK). The vegetable rotations tested were cabbage/tomato (B), kidney bean/tomato (D), and celery/tomato (Q). The results revealed that the substrate bacterial diversity and richness of each crop rotation were higher than those of CK.
View Article and Find Full Text PDFThe biological activities of the primary metabolites and secondary metabolites of 69 green cabbage varieties were tested. The LC-MS detection method was used to determine the content of 19 free amino acids (lysine, tryptophan, phenylalanine, methionine, threonine, isoleucine, leucine, valine, arginine, asparagine, glycine, proline, tyrosine, glutamine, alanine, aspartic acid, serine, and glutamate). The content of 10 polyphenols (chlorogenic acid, gallic acid, 4-coumaric acid, ferulic acid, gentisic acid, cymarin, erucic acid, benzoic acid, rutin, and kaempferol) was determined by the HPLC detection method.
View Article and Find Full Text PDFNormal development of plants is inhibited by inadequate light in winter in greenhouses in Northwest China. Growth lamps, using light-emitting diodes (LEDs) with red blue light (7R2B), were used to supplement daylight for 1, 2, and 3 h. Seedling growth, photosynthesis, and photosynthetic product; the Calvin cycle key and sugar metabolism-related enzymes and their encoding genes; and the light signal sensing regulation of key gene expression were studied in greenhouse cucumbers under three treatments to determine the best supplemental light durations to enhance cucumber cultivation in greenhouses in winter.
View Article and Find Full Text PDF5-Aminolevulinic acid (ALA) plays an important role in plant growth and development. It can also be used to enhance crop resistance to environmental stresses and improve the color and internal quality of fruits. However, there are limited reports regarding the effects of ALA on tomato fruit color and its regulatory mechanisms.
View Article and Find Full Text PDFMelatonin (Mel), a powerful antioxidant that has the ability to regulate physiological and biochemical processes in plants under abiotic stresses. However, its roles in pesticide detoxification is poorly understood. Herein, selecting leaf spraying insecticide imidacloprid (IMD) as the model, we demonstrated the detoxification mechanism underlying root pretreatment of Mel on IMD in cucumber.
View Article and Find Full Text PDFThe mechanisms involved in adventitious root formation reflect the adaptability of plants to the environment. Moreover, the rooting process is regulated by endogenous hormone signals. Ethylene, a signaling hormone molecule, has been shown to play an essential role in the process of root development.
View Article and Find Full Text PDFSoil salinity causes damage to plants and a reduction in output. A natural plant growth regulator, 5-aminolevulinic acid (ALA), has been shown to promote plant growth under abiotic stress conditions. In the present study, we assessed the effects of exogenously applied ALA (25 mg L) on the root architecture and Na distribution of cucumber ( L.
View Article and Find Full Text PDFBackground: Hydrogen sulfide (HS) is a gas signal molecule involved in regulating plants tolerance to heavy metals stress. In this study, we investigated the role of HS in cadmium-(Cd-) induced cell death of root tips of cucumber seedlings.
Results: The results showed that the application of 200 μM Cd caused cell death, increased the content of reactive oxygen species (ROS), chromatin condensation, the release of Cytochrome c (Cyt c) from mitochondria and activated caspase-3-like protease.