A working pipeline for proteomic analysis of secreted vesicle proteins from the plant cells has been developed using urea and mass spectrometry-compatible detergent RapiGest SF, where vesicles could be efficiently lysed and membrane-bound proteins could be efficiently dissolved and digested. The vesicle lysis and the protein digestion procedures are performed within one tube to minimize the protein loss. The protein digest is analyzed using LC-MS/MS after desalting with an SPE spin column.
View Article and Find Full Text PDFBackground: Investigating ear at molecule level is challenging task, since there is a lack of molecular detection by traditional diagnosis techniques such as otologic endoscopy, ear swab culture, and imaging diagnostic technique. Therefore, new development of noninvasive, highly sensitive, and convenient analytical method for investigating human ears is highly needed.
Results: We developed a wearable sampling device for extracting trace analytes in ear by fixing solid-phase microextraction fibers into modified earmuffs (SPME-in-earmuffs).
Determination of quantitative compositions of blended oils is an essential but challenging step for the quality control and safety assurance of blended oils. We herein report a method for the quantitative analysis of blended oils based on the intensity ratio of triacylglycerol marker ions, which could be obtained from the highly reproducible spectra acquired by using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to directly analyze blended oils in their oily states. We demonstrated that this method could provide good quantitative results to binary, ternary, and quaternary blended oils, with simultaneous quantitation of multiple compositions, and was applicable for quantitative analysis of commercial blended oil products.
View Article and Find Full Text PDFGlutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo.
View Article and Find Full Text PDFStyxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles.
View Article and Find Full Text PDFSARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry.
View Article and Find Full Text PDFThe Fenton-like activated molecular oxygen technology demonstrates significant potential in the treatment of refractory organic pollutants in wastewater, offering promising development prospects. We prepared a N-doped C-coated copper-based catalyst Cu/NC3-600 through the pyrolysis of Mel-modified Cu-based metal-organic framework (MOF). The results indicate that the degradation of 20 mg/L norfloxacin (NOR) was achieved using 1.
View Article and Find Full Text PDFA simple, rapid and high-throughput approach was developed for authentication of red wine for the first time, by combining spectral results from matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and direct analysis in real time mass spectrometry (DART-MS). By coupling with orthogonal partial least squares discrimination analysis (OPLS-DA), this approach enabled successful classification of 535 wines from 8 countries, with the correct classification rates of 100% on the calibration set and over 90% on the validation set for almost all countries, and 26 potential characteristic markers selected. Compared to one single technique, this approach allowed detection of more compound ions, and with better fitting and predictive performances.
View Article and Find Full Text PDFThe insulin-like growth factor 2 (IGF2) plays critical roles in cell proliferation, migration, differentiation, and survival. Despite its importance, the molecular mechanisms mediating the trafficking of IGF2 along the secretory pathway remain unclear. Here, we utilized a Retention Using Selective Hook system to analyze molecular mechanisms that regulate the secretion of IGF2.
View Article and Find Full Text PDFPeptide sequencing is of great significance to fundamental and applied research in the fields such as chemical, biological, medicinal and pharmaceutical sciences. With the rapid development of mass spectrometry and sequencing algorithms, de-novo peptide sequencing using tandem mass spectrometry (MS/MS) has become the main method for determining amino acid sequences of novel and unknown peptides. Advanced algorithms allow the amino acid sequence information to be accurately obtained from MS/MS spectra in short time.
View Article and Find Full Text PDFBackground: Excessive extracellular matrix deposition and increased stiffness are typical features of solid tumors such as hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC). These conditions create confined spaces for tumor cell migration and metastasis. The regulatory mechanism of confined migration remains unclear.
View Article and Find Full Text PDFThe enhancement of electron transport process on multiple channels of C-Fe and C-S-Fe bonds between dual-reaction centres was investigated for stimulating the antibiotics degradation in Fenton-like processes. Herein, multiple channels structure of sulfur-doped carbon coupled FeS cluster through C-Fe bond and C-S-Fe bond was constructed through density functional theory (DFT), and S-doped carbon framework coated FeS nanoparticles (FeS/SC) Fenton-like catalyst was prepared through hydrothermal and subsequent sulfuration process. The DFT calculations revealed that electrons are thermodynamically transferred from carbon to iron along both C-Fe and C-S-Fe bonds.
View Article and Find Full Text PDFCOVID-19 has already been lasting for more than two years and it has been severely affecting the whole world. Still, detection of SARS-CoV-2 remains the frontline approach to combat the pandemic, and the reverse transcription polymerase chain reaction (RT-PCR)-based method is the well recognized detection method for the enormous analytical demands. However, the RT-PCR method typically takes a relatively long time, and can produce false positive and false negative results.
View Article and Find Full Text PDFThe development of new technologies for the separation, selection, and isolation of microparticles such as rare target cells, circulating tumor cells, cancer stem cells, and immune cells has become increasingly important in the last few years. Microparticle separation technologies are usually applied to the analysis of disease-associated cells, but these procedures often face a cell separation problem that is often insufficient for single specific cell analyses. To overcome these limitations, a highly accurate size-based microparticle separation technique, herein called "rotating magnetic chromatography", is proposed in this work.
View Article and Find Full Text PDFThe immobilized coatings as a kind of promising Fenton-like catalysts with excellent performance and reusability for the efficient degradation of antibiotics and phenol under solar light irradiation is investigated. Herein, the porous γ-FeO/SiO immobilized ceramic coating on TC4 titanium alloy as photo-Fenton catalyst was prepared via plasma electrolytic oxidation technology. The as-obtained immobilized coating manifested a remarkable catalytic activity that the removal efficiencies of phenol and various antibiotics could reach more than 92% within 90 min, and presented excellent reusability after six runs in phenol removal.
View Article and Find Full Text PDFElectrospray ionization (ESI) is a powerful ionization technique in mass spectrometry (MS). There has been an increasing interest for the new development of ESI technique to extend its applications. ESI-MS with wooden tips (wooden-tip ESI-MS), an ESI technique invented in 2011, enabled not only new applications but also new insights into the ESI mechanism.
View Article and Find Full Text PDFDeveloping a highly efficient Fenton-like catalyst working in a wide pH range is imperative to accomplish its practical wastewater treatment. Herein, FeS/FeSO catalyst was synthesized by hydrothermal-solvothermal vulcanization with thioacetamide as a sulfur source. Characterization results confirmed FeS/FeSO consisted of pyrite, kornelite, and szomolnokite.
View Article and Find Full Text PDFCollision cross section (CCS) values generated from ion mobility mass spectrometry (IM-MS) have commonly been employed to facilitate lipid identification. However, this is hindered by the limited available lipid standards. Recently, CCS values were predicted by means of computational calculations, though the prediction precision was generally not good and the predicted CCS values of the lipid isomers were almost identical.
View Article and Find Full Text PDFTo develop a heterogeneous Fenton-like catalyst with desirable activity and reusability remains a great challenge for the practical degradation of environmental remediation. Herein, we demonstrate a dendritic Fe-Cu bimetallic catalyst consisted of a Cu/FeO shell and a FeCu core (E100). In comparisons of single Cu, Fe and FeO, E100 performs far better performance for the Fenton-like degradation of phenol, and its dominant Fenton-like active centers are Fe species under acidic pH or Cu species under neutral pH.
View Article and Find Full Text PDFPlants live as sessile organisms with large-scale gene duplication events and subsequent paralogue divergence during evolution. Notably, plant paralogues are expressed tissue-specifically and fine-tuned by phytohormones during various developmental processes. The coat protein complex II (COPII) is a highly conserved vesiculation machinery mediating protein transport from the endoplasmic reticulum to the Golgi apparatus in eukaryotes.
View Article and Find Full Text PDFDevelopment of sensors uniting different sensing principles is in line with the concept of reliable, comprehensive, and diversified equipment construction. However, the current exploration in this field is obstructed by compromise of reaction conditions and inevitable mutual interference arising from different sensing modes. This work reported a closed bipolar electrode (c-BPE) strategy for dual-modality detection or dual-target detection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture.
View Article and Find Full Text PDFBiosens Bioelectron
December 2021
Electrochemical sensors have shown great advantage and application potential in point-of-care testing (POCT) related scenarios. However, some fatal problems plague its widespread utilization, which include the susceptibility of sensors to interference in real samples (e.g.
View Article and Find Full Text PDFβ-Lactamase inhibitory protein (BLIP) consists of a tandem repeat of αβ domains conjugated by an interdomain loop and can effectively bind and inactivate class A β-lactamases, which are responsible for resistance of bacteria to β-lactam antibiotics. The varied ability of BLIP to bind different β-lactamases and the structural determinants for significant enhancement of BLIP variants with a point mutation are poorly understood. Here, we investigated the conformational dynamics of BLIP upon binding to three clinically prevalent class A β-lactamases (TEM1, SHV1, and PC1) with dissociation constants between subnanomolar and micromolar.
View Article and Find Full Text PDF