Publications by authors named "Zhongning Lin"

Diabetes mellitus ranks as the eighth most prevalent cause of mortality and disability worldwide. It is a major challenge for clinics to treat diabetic-infected wounds. The hydrogel (referred to as NanoAg@QAC), which combines the advantages of nanosilver (NanoAg) and quaternary ammonium chitosan (QAC), possesses the characteristics of an ideal wound dressing, including proper mechanical properties, antimicrobial activity, anti-biofilm properties, and cytocompatibility.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration.

View Article and Find Full Text PDF

Environmental aflatoxin B (AFB) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB-exposed hepatocyte-derived EVs (AFB-EVs) were extracted, and the functional effects of AFB-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB exposure-induced liver fibrogenesis.

View Article and Find Full Text PDF

Diabetic wounds are prone to develop chronic wounds due to bacterial infection and persistent inflammatory response. However, traditional dressings are monofunctional, lack bioactive substances, have limited bacterial inhibition as well as difficulties in adhesion and retention. These limit the therapeutic efficacy of traditional dressings on diabetic wounds.

View Article and Find Full Text PDF

Evidence recently showed that pleiotropic cytokine interferon-gamma (IFN-γ) in the tumor microenvironment (TME) plays a positive role in hepatocellular carcinoma (HCC) progression through the regulation of liver cancer stem cells (LCSCs) in HCC. The present study explored the role and potential mechanism of mitochondrial programmed cell death-ligand 1 (PD-L1) and its regulation of ferroptosis in modulating the cancer stemness of LCSCs. It was shown that mimicking TME IFN-γ exposure increased the LCSCs ratio and cancer stemness phenotypes in HCC cells.

View Article and Find Full Text PDF

As a key endogenous negative regulator of ferroptosis, glutathione peroxidase 4 (GPX4) can regulate its antioxidant function through multiple post-translational modification pathways. However, the effects of the phosphorylation/dephosphorylation status of GPX4 on the regulation of inducible ferroptosis in hepatocellular carcinoma (HCC) remain unclear. To investigate the effects and molecular mechanism of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins widely found in food contaminants, and its target organ is the liver. It poses a major food security and public health threat worldwide. However, the lipotoxicity mechanism of AFB1 exposure-induced liver injury remains unclear and requires further elucidation.

View Article and Find Full Text PDF

Ferroptosis has been realized in anticancer drug-induced acute cardiac/kidney injuries (ACI/AKI); however, molecular imaging approach to detect ferroptosis in ACI/AKI is a challenge. We report an artemisinin-based probe (Art-Gd) for contrast-enhanced magnetic resonance imaging of ferroptosis (feMRI) by exploiting the redox-active Fe(II) as a vivid chemical target. In vivo, the Art-Gd probe showed great feasibility in early diagnosis of anticancer drug-induced ACI/AKI, which was at least 24 and 48 hours earlier than the standard clinical assays for assessing ACI and AKI, respectively.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a common contaminant in many foodstuffs and is considered a public health concern worldwide due to its hepatotoxicity caused by lipid metabolism disorders. However, the molecular mechanism underlying AFB1-induced lipotoxicity-dependent liver injury via regulating cholesterol metabolism remains unclear. We established a cholesterol trafficking disorder-mediated hepatic lipotoxicity model with AFB1 mixture exposure in vitro (HepaRG and HepG2 cells, 1.

View Article and Find Full Text PDF

Few epidemiological studies have focused on prenatal phthalates (PAEs) and polybrominated diphenyl ethers (PBDEs) exposure to neonatal health in China. This study aimed to assess the associations between prenatal PAEs and PBDEs exposure and neonatal health in Guangxi, a Zhuang autonomous region of China. Concentrations of 4 PAEs metabolites (mPAEs) and 5 PBDEs congeners were measured in the serum of 267 healthy pregnant women.

View Article and Find Full Text PDF

Lipid metabolic dysregulation and liver inflammation have been reported to be associated with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Hepatitis B virus x protein (HBx) is a risk factor for NASH. Based on metabolomic and transcriptomic screens and public database analysis, we found that HBx-expressing hepatocyte-derived prostaglandin E2 (PGE2) induced macrophage polarization imbalance via prostaglandin E2 receptor 4 (EP4) through in vitro, ex vivo, and in vivo models.

View Article and Find Full Text PDF

Objectives: Hepatitis B virus X (HBx) is closely associated with HBV-related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx-associated hepatocarcinogenesis phenotypes and mediating anti-HBx antibody-mediated tumour suppression remains unknown.

View Article and Find Full Text PDF

Mitochondria-lysosome crosstalk is an intercellular communication platform regulating mitochondrial quality control (MQC). Activated dynamin-related protein 1 (Drp1) with phosphorylation at serine 616 (p-Drp1) plays a critical role in mitophagy-dependent cell survival and anti-cancer therapy for hepatocellular carcinoma (HCC). However, the underlying mechanisms that p-Drp1 involved in regulating mitochondria-lysosome crosstalk and mediating anti-HCC therapy remain unknown.

View Article and Find Full Text PDF

Autoimmune or infectious diseases often instigate the undesirable damages to tissues or organs to trigger immune-related diseases, which involve plenty of immune cells, pathogens and autoantibodies. Nanomedicine has a great potential in modulating immune system. Particularly, biomimetic nanomodulators can be designed for prevention, diagnosis and therapy to achieve a better targeted immunotherapy.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles and undergo constant fission and fusion, which are both essential for the maintenance of cell physiological functions. Dysregulation of dynamin-related protein 1 (Drp1)-dependent mitochondrial dynamics is associated with tumorigenesis and the chemotherapeutic response in hepatocellular carcinoma (HCC). The enzyme cyclooxygenase-2 (COX-2) is overexpressed in most cancer types and correlates with a poor prognosis.

View Article and Find Full Text PDF

Background: Autophagy is a conserved catabolic process, which plays an important role in regulating tumor cell motility and degrading protein aggregates. Chemotherapy-induced autophagy may lead to tumor distant metastasis and even chemo-insensitivity in the therapy of hepatocellular carcinoma (HCC). Therefore, a vast majority of HCC cases do not produce a significant response to monotherapy with autophagy inhibitors.

View Article and Find Full Text PDF

A traditional Chinese medicine formula based on the Coix seed and Lotus seed has been used as a general treatment of malnutrition, excessive fatigue, dysfunction of the spleen and stomach, and disorders of water transport in humans in China. However, there is limited information on its effects on the gut microbiota of piglets in vivo. In this study, the mix of Coix seed and Lotus were added the diet of forty weaned piglets (local piglets), and then evaluated it's affected on the gut microbiota of piglets and on the relations within the gut bacterial community.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system.

View Article and Find Full Text PDF

Scalds are one of the most common injuries and the 4th cause of trauma globally. Alginate has emerged as a promising scald wound dressing. Herein, we present a facile applicable strategy for electron beam (EB) radiation crosslinking gelatin, alginate, and carboxymethyl cellulose (CMC) into an injectable three-dimensional (3D) porous hydrogel (3D-PH) with a double crosslinked network for reliable deep second-degree scald wound healing.

View Article and Find Full Text PDF

Exposure to toxic metal contaminants, such as cadmium compounds (Cd), has been shown to induce adverse effects on various organs and tissues. In particular, blood vessels are severely impacted by Cd exposure, which may lead to cardiovascular diseases (CVDs). According to previous studies, CVDs are associated with increased cyclooxygenase 2 (COX-2) levels.

View Article and Find Full Text PDF

Background: Since the use of antibiotics in animal feed has become a critical concern worldwide due to severe threats to human health and environment, we are in need of finding alternatives to antibiotics in pig breeding, maintaining the health of pigs, and getting high-quality pork. As traditional Chinese herbs (TCH) are rich natural resources in China and show great benefits to human health we propose to transfer this abundant resource into animal production industry as additives.

Methods: Three groups of Chinese herbs (groups A, B, and C) were used as feed additives in the diet for pigs.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is one of predisposing factors for hepatocellular carcinoma (HCC). The role of HBV x protein (HBx) in mediating the induction and maintenance of cancer stemness during HBV-related HCC attracts considerable attention, but the exact mechanism has not been clearly elucidated. Here, ABCG2-dependent stem-like side population cells, which are thought to be liver cancer stem cells (LCSCs), were present in HCC cells, and the fraction of this subset was increased in HBx-expressing HCC cells.

View Article and Find Full Text PDF

There exists an emergency clinical demand to overcome TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) resistance, which is a major obstacle attributed to insufficient level or mutation of TRAIL receptors. Here, we developed an iron oxide cluster-based nanoplatform for both sensitization and MR image-guided evaluation to improve TRAIL/Apo2L efficacy in colorectal cancer, which has an inadequate response to TRAIL/Apo2L or chemotherapy. Specifically, NanoTRAIL (TRAIL/Apo2L-iron oxide nanoparticles) generated ROS (reactive oxygen species)-triggered JNK (c-Jun N-terminal kinase) activation and induced subsequent autophagy-assisted DR5 upregulation, resulting in a significant enhanced antitumor efficacy of TRAIL/Apo2L, which confirmed in both TRAIL-resistant HT-29, intermediately resistant SW-480 and sensitive HCT-116 cells.

View Article and Find Full Text PDF

Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are central microdomains of the ER that interact with mitochondria. MAMs provide an essential platform for crosstalk between the ER and mitochondria and play a critical role in the local transfer of calcium (Ca) to maintain cellular functions. Despite the potential uses of superparamagnetic iron oxide nanoparticles (SPIO-NPs) in biomedical applications, the hepatotoxicity of these nanoparticles (NPs) is not well characterized and little is known about the involvement of MAMs in ER-mitochondria crosstalk.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1), a food contaminant derived from Aspergillus fungi, has been reported to cause hepatic immunotoxicity via inflammatory infiltration and cytokines release. As a pro-inflammatory factor, cyclooxygenase-2 (COX-2) is widely involved in liver inflammation induced by xenobiotics. However, the mechanism by which AFB1-induced COX-2 regulates liver inflammatory injury via hepatocytes-Kupffer cells (KCs) crosstalk remains unclear and requires further elucidation.

View Article and Find Full Text PDF