Publications by authors named "Zhongmao Guo"

Caveola-located scavenger receptor type B class I (SR-BI) and activin receptor-like kinase-1 (ALK1) are involved in transendothelial transport of apolipoprotein B-carrying lipoproteins (apoB-LPs). Transport of apoB-LPs though mouse aortic endothelial cells (MAECs) is associated with apoE-carrying high-density lipoprotein (HDL)-like particle formation and apoAI induces raft-located proteins to shift to non-raft membranes by upregulation of ATP-binding cassette transporter A1 (ABCA1). To investigate apoAI's effect on transendothelial transport of apoB-LPs, MAECs and human coronary artery endothelial cells (HCAECs) were treated with apoB-LPs ± apoAI.

View Article and Find Full Text PDF

Apolipoprotein A-I (apoAI) upregulates ATP-binding cassette transport A1 (ABCA1) in various cell types. ABCA1 has been shown to induce the redistribution of raft-associated proteins and lipids to the non-raft membrane. This report investigated the effect of apoAI on ABCA1 expression and raft cholesterol and protein distribution, as well as the effect of ABCA1 knockdown on apoAI-induced changes in mouse aortic endothelial cells (MAECs).

View Article and Find Full Text PDF

Passage of apolipoprotein B-containing lipoproteins (apoB-LPs), i.e., triglyceride-rich lipoproteins (TRLs), intermediate-density lipoproteins (IDLs), and low-density lipoproteins (LDLs), through the endothelial monolayer occurs in normal and atherosclerotic arteries.

View Article and Find Full Text PDF

Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most common causes of morbidity and mortality world-wide. Involvement of in atherosclerosis is supported by observations from epidemiological, clinical, immunological, and molecular studies. Previously we reported that vesicles have a much higher invasive efficiency than their originating cells.

View Article and Find Full Text PDF

Unlabelled: We previously reported that overexpression of catalase upregulated xenobiotic- metabolizing enzyme (XME) expression and diminished benzo(a)pyrene (BaP) intermediate accumulation in mouse aortic endothelial cells (MAECs). Endoplasmic reticulum (ER) is the most active organelle involved in BaP metabolism. To examine the involvement of ER in catalase-induced BaP detoxification, we compared the level and distribution of XMEs, and the profile of BaP intermediates in the microsomes of wild-type and catalase transgenic endothelial cells.

View Article and Find Full Text PDF

We previously reported that apolipoprotein E (apoE) upregulates ATP-binding cassette transporter A1 (ABCA1) transcription through phosphatidylinositol 3-kinase (PI3K). Here we demonstrate that treatment of murine macrophages with human apoE3 enhanced Akt phosphorylation, and upregulated ABCA1 protein and mRNA expression. Inhibition of PI3K weakened apoE3-induced Akt phosphorylation, and ABCA1 protein and mRNA increase.

View Article and Find Full Text PDF

Consumption of Western diet (WD), contaminated with environmental toxicants, has been implicated as one of the risk factors for sporadic colon cancer. Our earlier studies using a mouse model revealed that compared to unsaturated dietary fat, the saturated dietary fat exacerbated the development of colon tumors caused by B(a)P. The objective of this study was to study how WD potentiates B(a)P-induced colon carcinogenesis in the adult male rats that carry a mutation in the Apc locus - the polyposis in the rat colon (PIRC) rats.

View Article and Find Full Text PDF

Data from this report demonstrate that the plasma and erythrocyte levels of total glutathione (TGSH) are significantly lower in nondiabetic old women than in their young counterparts, and significantly higher in diabetic patients than in age-matched nondiabetic controls. The ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) declines with age and diabetes, and shows an order as follows: nondiabetic young > nondiabetic old > diabetic old women. In addition, advanced glycation end-products (AGEs) accumulates in RBCs obtained from diabetic patients but not in those from young and old nondiabetic controls.

View Article and Find Full Text PDF

Activation of apolipoprotein E receptor-2 (apoER2) and very low density lipoprotein receptor (VLDLR) inhibits foam cell formation. Reelin is a ligand of these receptors. Here we generated two reelin subregions containing the receptor binding domain with or without its C-terminal region (R5-6C and R5-6, respectively) and studied the impact of these peptides on macrophage cholesterol metabolism.

View Article and Find Full Text PDF

Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment.

View Article and Find Full Text PDF

Excessive absorption of intestinal cholesterol is a risk factor for atherosclerosis. This report examines the effect of cholecystokinin (CCK) on plasma cholesterol level and intestinal cholesterol absorption using the in vivo models of C57BL/6 wild-type and low density lipoprotein receptor knock-out (LDLR(-/-)) mice. These data were supported by in vitro studies involving mouse primary intestinal epithelial cells and human Caco-2 cells; both express CCK receptor 1 and 2 (CCK1R and CCK2R).

View Article and Find Full Text PDF

Solute carrier family 7, member 11 (Slc7a11) is a plasma membrane cystine/glutamate exchanger that provides intracellular cystine to produce glutathione, a major cellular antioxidant. Oxidative and endoplasmic reticulum stresses up-regulate Slc7a11 expression by activation of nuclear factor erythroid 2-related factor 2 and transcription factor 4. This study examined the effect of ethanol on Slc7a11 expression and the underlying mechanism involved.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a peptide hormone that induces bile release into the intestinal lumen which in turn aids in fat digestion and absorption in the intestine. While excretion of bile acids and cholesterol into the feces eliminates cholesterol from the body, this report examined the effect of CCK on increasing plasma cholesterol and triglycerides in mice. Our data demonstrated that intravenous injection of [Thr28, Nle31]-CCK at a dose of 50 ng/kg significantly increased plasma triglyceride and cholesterol levels by 22 and 31%, respectively, in fasting low-density lipoprotein receptor knockout (LDLR(-/-)) mice.

View Article and Find Full Text PDF

ATP binding cassette A1 (ABCA1) is a membrane protein that promotes cellular cholesterol efflux. Using RAW 264.7 macrophages, we studied the relative effects of apolipoprotein (apo) E3 and apoE4 on ABCA1 and on the signaling pathway that regulates its expression.

View Article and Find Full Text PDF

The objective of this study was to determine the effect of benzo[a]pyrene (BaP), an abundant environmental polycyclic aromatic hydrocarbon compound, on the pathogenesis of abdominal aortic aneurysms (AAA). Earlier studies have shown that BaP promotes vasculopathy, including atherosclerosis, a predisposing factor for AAA development. In two experimental arms, 203 apolipoprotein E knockout (ApoE-/-) mice were evaluated in 4 groups: BaP, angiotensin II (AngII), BaP+AngII and control.

View Article and Find Full Text PDF

Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells.

View Article and Find Full Text PDF

Liver cells absorb apolipoprotein (Apo) B48-carrying lipoproteins in ApoE's absence, albeit not as efficiently as the ApoE-mediated process. Our objective was to identify differentially expressed hepatic endosome proteins in mice expressing ApoB48 but lacking ApoE and ApoB100 expression (ApoE-/-/B48/48). We purified early and late endosomes from ApoE-/-/B48/48 and wild-type mouse's livers.

View Article and Find Full Text PDF

Despite the well known importance of apolipoprotein (Apo) E in cholesterol efflux, the effect of ApoE on the expression of ATP-binding cassette transporter A1 (ABCA1) has never been investigated. The objective of this study was to determine the effect of ApoE on ApoB-carrying lipoprotein-induced expression of ABCA1, a protein that mediates cholesterol efflux. Our data demonstrate that ApoB-carrying lipoproteins obtained from both wild-type and ApoE knockout mice induced ApoAI-mediated cholesterol efflux in mouse macrophages, which was associated with an enhanced ABCA1 promoter activity, and an increased ABCA1 mRNA and protein expression.

View Article and Find Full Text PDF

Overexpression of catalase has been shown to accelerate benzo(a)pyrene (BaP) detoxification in mouse aortic endothelial cells (MAECs). NAD(P)H:quinone oxidoreductase-1 (NQO1) is an enzyme that catalyzes BaP-quinone detoxification. Aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor-2 (Nrf2) are transcription factors that control NQO1 expression.

View Article and Find Full Text PDF

Transformation of macrophages into foam cells by apolipoprotein (Apo) E-deficient, ApoB48-containing (E(-)/B48) lipoproteins has been shown to be associated with increased phosphorylation of eukaryotic initiation factor-2α (eIF-2α). The present report examined the causal relationship between eIF-2α phosphorylation and lipid accumulation in macrophages induced by E(-)/B48 lipoproteins. E(-)/B48 lipoproteins increased eIF-2α phosphorylation and cholesterol ester accumulation, while lipoprotein degradation decreased and lysosomal acid lipase and cathepsin B mRNA translation was inhibited in mouse peritoneal macrophages (MPMs).

View Article and Find Full Text PDF

ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound protein that regulates the efflux of cholesterol derived from internalized lipoproteins. Using a mouse macrophage cell line, this report studied the impact of low-density lipoproteins (LDL) on ABCA1 expression and the signaling pathway responsible for lipoprotein-induced ABCA1 expression. Our data demonstrated that treatment of macrophages with LDL increased ABCA1 mRNA and protein levels 4.

View Article and Find Full Text PDF

We previously reported upregulation of aryl hydrocarbon receptor (AhR) expression as a mechanism by which overexpression of Cu/Zn-superoxide dismutase (SOD) and/or catalase accelerates benzo(a)pyrene (BaP) detoxification in mouse aorta endothelial cells (MAECs). The objective of this study was to investigate the regulatory role of specificity protein-1 (Sp1) in AhR expression in MAECs that overexpress Cu/Zn-SOD and/or catalase. Our data demonstrated comparable levels of nuclear Sp1 protein in the transgenic and wild-type MAECs; however, binding of Sp1 protein to the AhR promoter region was more than 2-fold higher in MAECs overexpressing Cu/Zn-SOD and/or catalase than in wild-type cells.

View Article and Find Full Text PDF

A reduction in endogenously generated reactive oxygen species in vivo delays benzo(a)pyrene (BaP)-accelerated atherosclerosis, as revealed in hypercholesterolemic mice overexpressing Cu/Zn-superoxide dismutase (SOD) and/or catalase. To understand the molecular events involved in this protective action, we studied the effects of Cu/Zn-SOD and/or catalase overexpression on BaP detoxification and on aryl hydrocarbon receptor (AhR) expression and its target gene expression in mouse aortic endothelial cells (MAECs). Our data demonstrate that overexpression of Cu/Zn-SOD and/or catalase leads to an 18- to 20-fold increase in the expression of AhR protein in MAECs.

View Article and Find Full Text PDF

The carcinogenic polycylic aromatic hydrocarbon, benzo(a)pyrene (BaP), has been shown to generate reactive oxygen species (ROS) and accelerate the development of atherosclerosis. To assess the causal role of BaP-generated ROS in this process, we evaluated atherosclerotic metrics in apolipoprotein E-deficient (ApoE(-/-)) mice with or without overexpression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and/or catalase. Without BaP, aortic atherosclerotic lesions were smaller in ApoE(-/-) mice overexpressing catalase or both Cu/Zn-SOD and catalase than in those overexpressing neither or Cu/Zn-SOD only.

View Article and Find Full Text PDF

Although it is understood that hydrogen peroxide (H(2)O(2)) promotes cellular proliferation, little is known about its role in endothelial cell cycle progression. To assess the regulatory role of endogenously produced H(2)O(2) in cell cycle progression, we studied the cell cycle progression in mouse aortic endothelial cells (MAECs) obtained from mice overexpressing a human catalase transgene (hCatTg), which destroys H(2)O(2). The hCatTg MAECs displayed a prolonged doubling time compared to wild-type controls (44.

View Article and Find Full Text PDF