Mimicking the superstructures and functions of natural chiral materials is beneficial to understand specific biological activities in living organisms and broaden applications in the fields of chemistry and materials sciences. However, it is still a great challenge to construct water-soluble, double-helical polymers with multiple responsiveness. Herein, we report for the first time a straightforward, general strategy to address this issue by taking advantage of Passerini multicomponent polymerization-induced assembly (PMPIA).
View Article and Find Full Text PDF"The Tao begets the One. One begets all things of the world." This quote from Tao Te Ching is still inspiring for scientists in chemistry and materials science: The "One" can refer to a single molecule.
View Article and Find Full Text PDFExcluded-volume (EV) interaction, also known as the EV effect, can drive the collapse of polymer chains in a polymer solution and promote the crystallization of polymer chains. Herein we report, for the first time, the effect of EV interaction on the single-chain mechanics of a polymer, poly(ethylene glycol) (PEG). By using AFM-based single-molecule force spectroscopy, the single-chain mechanics of a PEG chain has been detected in various nonpolar organic solvents with different molecule sizes.
View Article and Find Full Text PDFWater, the dominant component under the physiological condition, is a complicated solvent which greatly affects the properties of solute molecules. Here, we utilize atomic force microscope-based single-molecule force spectroscopy to study the influence of water on the single-molecule elasticity of an unstructured single-stranded RNA (poly(U)). In nonpolar solvents, RNA presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity calculated by quantum mechanics calculations.
View Article and Find Full Text PDF