Publications by authors named "Zhonglan Zou"

Environmental exposure to arsenic is associated with significant health risks, including diabetogenic effects linked to pancreatic dysfunction. The NOD-like receptor protein 3 (NLRP3) inflammasome has been implicated in various metabolic abnormalities; however, its specific role in arsenic-induced pancreatic dysfunction remains insufficiently understood. This study aimed to elucidate the involvement and underlying mechanisms of the NLRP3 inflammasome in arsenic-induced pancreatic beta cells dysfunction through in vivo and in vitro models.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have therapeutic potential in various diseases due to their capacity to transfer bioactive cargoes such as microRNAs (miRNAs or miRs) to recipient cells. The present study isolated EVs from rat MSCs and aimed to delineate their functions and molecular mechanisms in early brain injury following subarachnoid hemorrhage (SAH). We initially determined the expression of miR-18a-5p and ENC1 in hypoxia/reoxygenation (H/R)-induced brain cortical neurons and rat models of SAH induced by the endovascular perforation method.

View Article and Find Full Text PDF

Background: Several lines of evidence support a significant relationship between exposure to arsenic and diabetes. However, the underlying pathophysiological mechanisms remain incompletely elucidated.

Objective: This study examined the association and risk of circulating inflammatory mediators with hyperglycemia in coal-induced arsenicosis.

View Article and Find Full Text PDF

Increasing evidence supports the role of arsenic in dysregulated immune and inflammation responses, while, safe and effective treatments have not been fully examined. (RRT), a traditional Chinese edible fruit with potential immunoregulatory activities, was considered as a dietary supplement to explore its protective effects and possible mechanism in arsenic-induced dysregulated inflammation responses. We enrolled 209 arsenicosis patients and 41 controls to obtain baseline data, including the degree of arsenic poisoning prior to the RRT juice (RRTJ) intervention.

View Article and Find Full Text PDF

Coal-burning type of arsenism, a chronic arsenism caused by environmental arsenic pollution, found firstly at Guizhou Province of China, manifested as the disruption of pro- and anti-inflammatory T cell balance and multiple organ damage, while no specific treatment for the arsenism patients. The effect of methylation of the forkhead box P3 (Foxp3) promoter region on arsenic-induced disruption of pro- and anti-inflammatory T cell balance was first evaluated in this study, between the control and arsenism groups. The results show that arsenic can induce the hypermethylation of 6 sites in the Foxp3 promoter by upregulating the expression of recombinant DNA Methyltransferase 1 (Dnmt1) mRNA, leading to the downregulation of Foxp3 mRNA, Tregs, and interleukin 10 (IL-10, anti-inflammatory cytokine) levels, and increased the levels of interleukin 17 (IL-17, pro-inflammatory cytokine) in the peripheral blood of patients with arsenic poisoning.

View Article and Find Full Text PDF

Arsenic is a well-known environmental toxicant and carcinogen, which has been epidemiologically proved related to the increased hepatic disorders. Researches have shown that aseptic inflammation and abnormal immune response are associated with arsenic-induced liver injury. However, the immunotoxic effects of liver have not been extensively characterized.

View Article and Find Full Text PDF

Arsenicosis induced by chronic exposure to arsenic is recognized as one of the main damaging effects on public health. Exposure to arsenic can cause hepatic fibrosis, but the molecular mechanisms by which this occurs are complex and elusive. It is not known if miRNAs are involved in arsenic-induced liver fibrosis.

View Article and Find Full Text PDF

Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive.

View Article and Find Full Text PDF

Endemic arsenicosis is a public health problem that affects thousands of people worldwide. However, the biological mechanism involved is not well characterized, and there is no specific treatment. Exposure to arsenic may be associated with immune-related problems.

View Article and Find Full Text PDF

To evaluate the effect of coal-burning arsenic (As) exposure on lung function and the potential underlying mechanisms, a total of 217 As-exposed subjects and 75 reference subjects were recruited into this study. Hair arsenic (H-As), pulmonary function tests, and serum inflammatory markers CC16, SP-A, MMP-9, and TIMP-1 were evaluated. Residents from As-exposed areas showed higher H-As concentrations (median 0.

View Article and Find Full Text PDF

Background: Currently, most arsenic (As) studies in populations are concerned with water-borne arsenicosis. However, residents in Xingren County of Guizhou Province, Southwest of China, represent a unique case of arsenicosis which is related to indoor combustion of high As-containing coal. This study aimed to assess the alterations of As levels and its risk factors in coal-borne arsenicosis residents during the past 20 years.

View Article and Find Full Text PDF

Chronic exposure to arsenic remains a major environmental public health concern worldwide, affecting hundreds of millions of people. Arsenic-induced multiorgan damage and miRNA expression changes after arsenic exposure have been determined, but their associations and risks have not been fully examined. In this study, we measured the expression levels of five miRNAs in plasma from control and arsenic poisoned populations, and we analyzed the relationship between miRNAs and multiorgan damage.

View Article and Find Full Text PDF

Arsenic, an established human carcinogen, causes genetic toxicity. However, the molecular mechanisms involved remain unknown. MicroRNAs (miRNAs) are regulators that participate in fundamental cellular processes.

View Article and Find Full Text PDF

Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown.

View Article and Find Full Text PDF

Endemic arsenism, caused by burning coal containing high levels of arsenic, is found only in the Guizhou and Shanxi Provinces of China. Dysregulated microRNAs (miRNAs), detected in the blood, are emerging as promising biomarkers. At present, little is known about the change and clinical efficacy of circulating miRNAs in patients with endemic arsenism produced by burning of coal.

View Article and Find Full Text PDF