Publications by authors named "Zhongju Lu"

Objective: To investigate the association between stages of QTc prolongation and the risk of cardiac events among patients on TKIs.

Methods: This was a retrospective cohort study performed at an academic tertiary care center of cancer patients who were taking TKIs or not taking TKIs. Patients with two recorded ECGs between January 1, 2009, and December 31, 2019, were selected from an electronic database.

View Article and Find Full Text PDF

To assess the prevalence of QTc prolongation in both non-diabetic and diabetic patients on TKIs. Some TKIs have been reported to cause QTc prolongation, which is prevalent in diabetes. However, there is no Risk Evaluation and Mitigation Strategy using series ECG to monitor those patients.

View Article and Find Full Text PDF

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. I (KCNQ1+KCNE1), a slowly activating K current, plays a role in action potential repolarization.

View Article and Find Full Text PDF

It has long been known that heart rate is regulated by the autonomic nervous system. Recently, we demonstrated that the pacemaker current, I , is regulated by phosphoinositide 3-kinase (PI3K) signaling independently of the autonomic nervous system. Inhibition of PI3K in sinus node (SN) myocytes shifts the activation of I by almost 16 mV in the negative direction.

View Article and Find Full Text PDF

Heart rate in physiological conditions is set by the sinoatrial node (SN), the primary cardiac pacing tissue. Phosphoinositide 3-kinase (PI3K) signaling is a major regulatory pathway in all normal cells, and its dysregulation is prominent in diabetes, cancer, and heart failure. Here, we show that inhibition of PI3K slows the pacing rate of the SN in situ and in vitro and reduces the early slope of diastolic depolarization.

View Article and Find Full Text PDF

: To evaluate the prevalence and longitudinal changes of prolonged QTc in DM patients admitted to our community hospital, and to determine, if any, its correlation with changes of left ventricular ejection fraction (LVEF). : A retrospective chart review of patients with Type 1 (T1DM) and Type 2 (T2DM) with at least two admissions during a four-year period was performed to identify QTc interval, and LVEF, as measured on transthoracic echocardiogram. Changes in QTc and LVEF between patient hospital admissions were compared.

View Article and Find Full Text PDF

Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible.

View Article and Find Full Text PDF

It has been reported that bitter tastants decrease blood pressure and relax precontracted vascular smooth muscle. However, the underlying mechanisms remain unclear. The aim of the present study was to determine the mechanism underlying the vasorelaxant effect of the bitter tastants.

View Article and Find Full Text PDF

Gating of ion channels by ligands is fundamental to cellular function, and ATP serves as both an energy source and a signaling molecule that modulates ion channel and transporter functions. The slowly activating K(+) channel I(Ks) in cardiac myocytes is formed by KCNQ1 and KCNE1 subunits that conduct K(+) to repolarize the action potential. Here we show that intracellular ATP activates heterologously coexpressed KCNQ1 and KCNE1 as well as I(Ks) in cardiac myocytes by directly binding to the C terminus of KCNQ1 to allow the pore to open.

View Article and Find Full Text PDF

Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues.

View Article and Find Full Text PDF

Diabetes is an independent risk factor for sudden cardiac death and ventricular arrhythmia complications of acute coronary syndrome. Prolongation of the QT interval on the electrocardiogram is also a risk factor for arrhythmias and sudden death, and the increased prevalence of QT prolongation is an independent risk factor for cardiovascular death in diabetic patients. The pathophysiological mechanisms responsible for this lethal complication are poorly understood.

View Article and Find Full Text PDF

Background: Left ventricular pacing (LVP) in canine heart alters ventricular activation, leading to reduced transient outward potassium current (I(to)), loss of the epicardial action potential notch, and T-wave vector displacement. These repolarization changes, referred to as cardiac memory, are initiated by locally increased angiotensin II (AngII) levels. In HEK293 cells in which Kv4.

View Article and Find Full Text PDF

Many drugs, including some commonly used medications, can cause abnormal heart rhythms and sudden death, as manifest by a prolonged QT interval in the electrocardiogram. Cardiac arrhythmias caused by drug-induced long QT syndrome are thought to result mainly from reductions in the delayed rectifier potassium ion (K(+)) current I(Kr). Here, we report a mechanism for drug-induced QT prolongation that involves changes in multiple ion currents caused by a decrease in phosphoinositide 3-kinase (PI3K) signaling.

View Article and Find Full Text PDF

The voltage-gated Na+ channel is a critical determinant of the action potential (AP) upstroke. Increasing Na+ conductance may speed AP propagation. In this study, we propose use of the skeletal muscle Na+ channel SkM1 as a more favorable gene than the cardiac isoform SCN5A to enhance conduction velocity in depolarized cardiac tissue.

View Article and Find Full Text PDF

Diabetes is associated with an increased risk of heart failure and the development of a cardiomyopathy whose etiology is only partially understood. Ca entry through the voltage-dependent L-type Ca channel CaV1.2 initiates the contractile cycle in cardiac myocytes.

View Article and Find Full Text PDF

Background: Phosphoinositide 3-kinase (PI3K) p110alpha plays a key role in insulin action and tumorigenesis. Myocyte contraction is initiated by an inward Ca(2+) current (I(Ca,L)) through the voltage-dependent L-type Ca(2+) channel (LTCC). The aim of this study was to evaluate whether p110alpha also controls cardiac contractility by regulating the LTCC.

View Article and Find Full Text PDF

The need to regenerate tissue is paramount, especially for the heart that lacks the ability to regenerate after injury. The urinary bladder extracellular matrix (ECM), when used to repair a right ventricular defect, successfully regenerated some mechanical function. The objective of the current study was to determine whether the regenerative effect of ECM could be improved by seeding the patch with human mesenchymal stem cells (hMSCs) enhanced to differentiate down a cardiac linage.

View Article and Find Full Text PDF

Heart failure survival after diagnosis has barely changed for more than half a century. Recently, investigation has focused on differentiation of stem cells in vitro and their delivery for use in vivo as replacement cardiac contractile elements. Here we report preliminary results using mesenchymal stem cells partially differentiated to a cardiac lineage in vitro.

View Article and Find Full Text PDF

Ischemic preconditioning is a potent endogenous mechanism protecting many organs from the devastating effects of prolonged ischemia. In the heart, NO is one mediator of this myoprotective response thought to involve activation of the K(ATP) channel. Ischemic preconditioning is known to be induced by metabolic inhibition using sodium cyanide (NaCN) in single cardiomyocytes.

View Article and Find Full Text PDF

Objective: Contraction of cardiac myocytes is initiated by Ca(2+) entry through the voltage-dependent L-type Ca(2+) channel (LTCC). Previous studies have shown that phosphatidylinositol (PI) 3-kinase signaling modulates LTCC function. Because PI 3-kinases are key mediators of insulin action, we investigated whether LTCC function is affected in diabetic animals due to reduced PI 3-kinase signaling.

View Article and Find Full Text PDF

Background: Biological pacemaking has been performed with viral vectors, human embryonic stem cells, and adult human mesenchymal stem cells (hMSCs) as delivery systems. Only with human embryonic stem cells are data available regarding stability for >2 to 3 weeks, and here, immunosuppression has been used to facilitate survival of xenografts. The purpose of the present study was to determine whether hMSCs provide stable impulse initiation over 6 weeks without the use of immunosuppression, the "dose" of hMSCs that ensures function over this period, and the catecholamine responsiveness of hMSC-packaged pacemakers.

View Article and Find Full Text PDF

Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart.

View Article and Find Full Text PDF

Background: Biological pacemakers (BPM) implanted in canine left bundle branch function competitively with electronic pacemakers (EPM). We hypothesized that BPM engineered with the use of mE324A mutant murine HCN2 (mHCN2) genes would improve function over mHCN2 and that BPM/EPM tandems confer advantage over either approach alone.

Methods And Results: In cultured neonatal rat myocytes, activation midpoint was -46.

View Article and Find Full Text PDF

For many patients with cardiac insufficiency, the disease progresses inexorably to organ dilatation, pump failure, and death. Although there are examples of reversible heart failure in man, our understanding of how the myocardium repairs itself is limited. A well defined animal model of reversible heart failure would allow us to better investigate these restorative processes.

View Article and Find Full Text PDF

Receptors coupled to Galpha q play a key role in the development of heart failure. Studies using genetically modified mice suggest that Galpha q mediates a hypertrophic response in cardiac myocytes. Galpha q signaling in these models is modified during early growth and development, whereas most heart failure in humans occurs after cardiac damage sustained during adulthood.

View Article and Find Full Text PDF