To address the demand for food by a rapidly growing human population, agricultural scientists have carried out both plant breeding and genetic engineering research. Previously, we reported that the constitutive expression of a pea apyrase (Nucleoside triphosphate, diphosphohydrolase) gene, psNTP9, under the control of the CaMV35S promoter, resulted in soybean plants with an expanded root system architecture, enhanced drought resistance and increased seed yield when they are grown in greenhouses under controlled conditions. Here, we report that psNTP9-expressing soybean lines also show significantly enhanced seed yields when grown in multiple different field conditions at multiple field sites, including when the gene is introgressed into elite germplasm.
View Article and Find Full Text PDFGlyphosate (N-phosphonomethyl-glycine) is the world's most widely used broad spectrum, post-emergence herbicide. It inhibits the chloroplast-targeted enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.
View Article and Find Full Text PDFNitrogen is an essential nutrient for plants, but crop plants are inefficient in the acquisition and utilization of applied nitrogen. This often results in producers over applying nitrogen fertilizers, which can negatively impact the environment. The development of crop plants with more efficient nitrogen usage is, therefore, an important research goal in achieving greater agricultural sustainability.
View Article and Find Full Text PDFNitrogen (N) fertilizers are a major input cost in rice production, and its excess application leads to major environmental pollution. Development of rice varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Here, we report the results of field evaluations of marker-free transgenic NERICA4 (New Rice for Africa 4) rice lines overexpressing barley alanine amino transferase (HvAlaAT) under the control of a rice stress-inducible promoter (pOsAnt1).
View Article and Find Full Text PDF