Silicosis is an occupational disease caused by long-term inhalation of free silica, resulting in a significant global health burden. Its pathogenesis remains unclear, and there is no effective treatment. Proliferative and activated myofibroblasts play a key role in the development of silicosis.
View Article and Find Full Text PDFSilicosis is an occupational respiratory disease caused by long-term inhalation of high concentrations of free silica particles. Studies suggest that oxidative stress is a crucial initiator of silicosis fibrosis, and previous studies have linked the antioxidative stress transcription factor known as Nrf2 to fibrosis antagonism. Myofibroblasts play a pivotal role in tissue damage repair due to oxidative stress.
View Article and Find Full Text PDFSilicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of silica. The early diagnosis and timely implementation of intervention measures are crucial in preventing silicosis deterioration further. However, the lack of screening and diagnostic measures for early-stage silicosis remains a significant challenge.
View Article and Find Full Text PDFHalide perovskites exhibit exceptional optoelectronic properties for photoelectrochemical production of solar fuels and chemicals but their instability in aqueous electrolytes hampers their application. Here we present ultrastable perovskite CsPbBr-based photoanodes achieved with both multifunctional glassy carbon and boron-doped diamond sheets coated with Ni nanopyramids and NiFeOOH. These perovskite photoanodes achieve record operational stability in aqueous electrolytes, preserving 95% of their initial photocurrent density for 168 h of continuous operation with the glassy carbon sheets and 97% for 210 h with the boron-doped diamond sheets, due to the excellent mechanical and chemical stability of glassy carbon, boron-doped diamond, and nickel metal.
View Article and Find Full Text PDFThe widespread manufacture of silica and its extensive use, and potential release of silica into the environment pose a serious human health hazard. Silicosis, a severe global public health issue, is caused by exposure to silica, leading to persistent inflammation and fibrosis of the lungs. The underlying pathogenic mechanisms of silicosis remain elusive.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2023
Macrophage pyroptosis has recently been involved in some inflammatory and fibrosis diseases, however, the role of macrophage pyroptosis in silica-induced pulmonary fibrosis has not been fully elucidated. In this study, we explored the role of macrophage pyroptosis in silicosis in vivo and in vitro. A mouse model of silicosis was established and mice were sacrificed at 7, 14, and 28 days after exposure of silica.
View Article and Find Full Text PDFSilicosis is a fatal occupational respiratory disease caused by the prolonged inhalation of respirable silica. The core event of silicosis is the heightened activity of fibroblasts, which excessively synthesize extracellular matrix (ECM) proteins. Our previous studies have highlighted that human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs) hold promise in mitigating silicosis and the significant role played by microRNAs (miRNAs) in this process.
View Article and Find Full Text PDFSilicosis is one of several potentially fatal occupational pathologies caused by the prolonged inhalation of respirable crystalline silica. Previous studies have shown that lung epithelial-mesenchymal transition (EMT) plays a significant role in the fibrosis effect of silicosis. Human umbilical cord mesenchymal stem cells-derived Extracellular vesicles (hucMSC-EVs) have attracted great interest as a potential therapy of EMT and fibrosis-related diseases.
View Article and Find Full Text PDFSilicosis is a progressive inflammatory disease with poorly defined mechanisms and limited therapeutic options. Recent studies found that microRNAs (miRNAs) and circular RNAs (circRNAs) were involved in the development of respiratory diseases; however, the function of non-coding RNAs in silicosis was still needed to be further explored. We found that miR-223-3p was significantly decreased in macrophages and lung tissues of mice after silica treatment, which were consistent with the results of GEO database microarray analysis.
View Article and Find Full Text PDFInvestigating kinetic mechanisms to design efficient photocatalysts is critical for improving photocatalytic CO reduction, but the stochastic photo-physical/chemical properties of kinetics remain unclear. Herein, we propose a statistical study to discuss the stochastic feature evolution of photocatalytic systems. The uncertainties of light absorption, charge carrier migration, and surface reaction are described by nonparametric estimation methods in the proposed model, which includes the effect of operational and material parameters.
View Article and Find Full Text PDFLow molecular weight seaweed polysaccharides exhibit promising potential as novel therapeutics for the prevention of obesity and gut microbiota dysbiosis. The interplay between polysaccharides and gut microbiota may play crucial roles in their anti-obesity effects, but is largely unknown, including the impact of polysaccharides on the composition of the gut microbiota with polysaccharide-degrading capacity. The primary structure of a 5.
View Article and Find Full Text PDFArtificial photoreduction of CO is vital for the sustainable development of human beings via solar energy storage in stable chemicals. This process involves intricate light-matter interactions, but the role of incident light intensity in photocatalysis remains obscure. Herein, the influence of excitation intensity on charge kinetics and photocatalytic activity is investigated.
View Article and Find Full Text PDFAirborne fine particulate matter (PM) is considered to be a risk factor for lung fibrosis, and therefore, it has attracted public attention due to its various physicochemical features and its adverse effects on health. However, little remains to be known regarding the mechanism of PM-induced pulmonary fibrosis. The lung microbiota may be a potential factor involved in the adverse outcomes of pulmonary fibrosis.
View Article and Find Full Text PDFSilicosis of pulmonary fibrosis (PF) is related to long-term excessive inhalation of silica. The activation of fibroblasts into myofibroblasts is the main terminal effect leading to lung fibrosis, which is of great significance to the study of the occurrence and development of silicosis fibrosis and its prevention and treatment. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) are considered to be a potential therapy of silica-induced PF, however, their exact mechanism remains unknown.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2022
The impact of PM on epithelial cells is a pivotal process leading to many lung pathological changes and pulmonary diseases. In addition to PM direct interaction with epithelia, macrophages that engulf PM may also influence the function of epithelial cells. However, among the toxic researches of PM, there is a lack of evaluation of direct or indirect exposure model on human bronchial epithelial cell against PM.
View Article and Find Full Text PDFEpidemiological evidence has shown that fine particulate matter (PM)-triggered inflammatory cascades are pivotal causes of chronic obstructive pulmonary disease (COPD). However, the specific molecular mechanism involved in PM-induced COPD has not been clarified. Herein, we found that PM significantly downregulated miR-149-5p and activated the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways and generated the inflammatory response in COPD mice and in human bronchial epithelial (BEAS-2B) cells.
View Article and Find Full Text PDFBackground: Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics.
View Article and Find Full Text PDFThe pathogenesis of pulmonary fibrosis diseases is considered to be related with environmental exposures, but the exact mechanism is unclear and there are no effective treatments. The contribution of epithelial-mesenchymal transition (EMT) to lung fibrosis has been controversial. It was found that partial EMT might play a vital role in renal fibrosis.
View Article and Find Full Text PDFMicromonospora craniellae LHW63014 is a novel marine Micromonospora, isolated from a Craniella species sponge collected in the South China Sea. In this study, we report the complete genome sequence of M. craniellae LHW63014, which is comprised of a circular chromosome of 6,839,926 bp with the G + C content of 70.
View Article and Find Full Text PDFSilicosis is characterized by pulmonary fibrosis due to long-term inhalation of silica particles. Although the cause of this serious disease is known, its pathogenesis remains unclear and there are currently no specific treatments. Recent studies have shown that the anti-oxidant transcription factor Nrf2 is expressed at reduced levels in fibrotic foci, which may be related to disease progression.
View Article and Find Full Text PDFThe impacts of ambient fine particulate matter (PM) on public health are a worldwide concern. Epidemiological evidence has shown that PM-triggered inflammatory cascades and lung tissue damage are important causes of chronic obstructive pulmonary disease (COPD). However, most laboratory studies of COPD have focused on animal models of cigarette smoke exposure or combined exposure to cigarette smoke and PM.
View Article and Find Full Text PDFLung epithelial-mesenchymal transition (EMT) plays an important role in silicosis fibrosis. The reverse process of EMT is mesenchymal-epithelial transition (MET), which is viewed as an anti-EMT therapy and is a good target toward fibrosis. MicroRNAs (miRNAs) have emerged as potent regulators of EMT and MET programs, and, hence, we tested the miRNA expression using microarray assay and investigated their roles in silica-induced EMT in lung epithelial cells.
View Article and Find Full Text PDFBackground: Silicosis is a common occupational disease, characterized by silicotic nodules and diffuse pulmonary fibrosis. We demonstrated an anti-fibrotic effect of bone marrow mesenchymal stem cells (BMSCs) in silica-induced lung fibrosis. In the present study, we sought to clarify the homing ability of BMSCs and the specific mechanisms for their effects.
View Article and Find Full Text PDFExposure to fine particulate matter (PM) can induce oxidative stress and proinflammatory cytokine production, which are central for the induction of PM-mediated adverse effects on public health. Nuclear factor kappa B (NF-κB) signaling is essential for inflammation. The subcellular distribution of thioredoxin (Trx) is related to the activation of NF-κB, but the mechanism involved is unclear.
View Article and Find Full Text PDF