Publications by authors named "Zhonghui Gao"

It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the -band center model.

View Article and Find Full Text PDF

MXenes have extensive applications due to their different properties determined by intrinsic structures and various functional groups. Exploring different functional groups of MXenes leads to improved performance or potential applications. In this work, we prepared new TiCPBr (x=0.

View Article and Find Full Text PDF

PEO-LiX solid polymer electrolyte (SPE) with the addition of LiLaZrTaO (LLZTO) fillers is considered as a promising solid-state electrolyte for solid-state Li-ion batteries. However, the developments of the SPE have caused additional challenges, such as poor contact interface and SPE/Li interface stability during cycling, which always lead to potentially catastrophic battery failure. The main problem is that the real impact of LLZTO fillers on the interfacial properties between SPE and Li metal is still unclear.

View Article and Find Full Text PDF

Objective: Internet gaming disorder (IGD) can seriously impair an individual's physical and mental health. However, unlike the majority of those suffering from substance addiction, individuals with IGD may recover without any professional intervention. Understanding the brain mechanisms of natural recovery from IGD may provide new insight into how to prevent addiction and implement more targeted interventions.

View Article and Find Full Text PDF

Aqueous zinc batteries are appealing devices for cost-effective and environmentally sustainable energy storage. However, the zinc metal deposition at the anode strongly influences the battery cycle life and performance. To circumvent this issue, here we propose the use of lanthanum nitrate (La(NO)) as supporting salt for aqueous zinc sulfate (ZnSO) electrolyte solutions.

View Article and Find Full Text PDF

Sodium (Na) metal batteries have attracted much attention due to their rich resources, low cost, and high energy density. As a promising solid electrolyte, Na Zr Si PO (NZSP) is expected to be used in solid-state Na metal batteries addressing the safety concerns. However, due to the poor contact between NZSP and the Na metal, the interfacial resistance is too large to gain proper performance for practical solid-state batteries (SSBs) application.

View Article and Find Full Text PDF

Lipid remodeling plays an important role in the adaptation of plants to environmental factors, but the mechanism by which lipid remodeling mediates salt stress response remains unclear. In this study, we compared the root and leaf lipidome profiles of salt-tolerant and salt-sensitive sweet potato cultivars (Xu 22 and Xu 32, respectively) under salinity stress. After salt treatment, the leaf lipidome showed more significant remodeling than the root lipidome in both cultivars.

View Article and Find Full Text PDF

Sn/Nitrogen-doped reduced graphene oxide (Sn@N-G) composites have been successfully synthesized via a facile method for lithium-ion batteries. Compared with the Sn or Sn/graphene anodes, the Sn@N-G anode exhibits a superb rate capability of 535 mAh g at 2C and cycling stability up to 300 cycles at 0.5C.

View Article and Find Full Text PDF

Identification of catalytic sites for oxygen reduction and evolution reactions (ORR/OER) is critical to rationally develop highly efficient bifunctional carbon-based metal-free electrocatalyst. Here, a unique defect-rich N-doped ultranarrow graphene nanoribbon with a high aspect ratio that exhibits excellent ORR/OER bifunctional activities and impressive long-term cycling stability in Zn-air batteries is successfully fabricated. Density functional theory calculations indicates that the topological defects (e.

View Article and Find Full Text PDF

A novel solid sodium-ion conductor, NaMgTeO (NMTO) with a P2-type honeycomb-layered structure, has been synthesized for the first time by a simple solid-state synthetic route. The conductor of NMTO exhibits high conductivity of 2.3 × 10 S cm at room temperature (RT) and a large electrochemical window of ∼4.

View Article and Find Full Text PDF

All-solid-state lithium batteries (ASSLBs) have the potential to revolutionize battery systems for electric vehicles due to their benefits in safety, energy density, packaging, and operable temperature range. As the key component in ASSLBs, inorganic lithium-ion-based solid-state electrolytes (SSEs) have attracted great interest, and advances in SSEs are vital to deliver the promise of ASSLBs. Herein, a survey of emerging SSEs is presented, and ion-transport mechanisms are briefly discussed.

View Article and Find Full Text PDF

Since p-n heterojunction photocatalysts with higher energy facets exposed usually possess greatly enhanced photocatalytic activities than single-phase catalysts, a novel Cu2O octadecahedron/TiO2 quantum dot (Cu2O-O/TiO2-QD) p-n heterojunctions composite was designed and synthesized in this study. Cu2O octadecahedra (Cu2O-O) with {110} facets and {100} facets exposed were synthesized first, then highly dispersed TiO2 quantum dots (TiO2-QDs) were loaded on Cu2O-O by the precipitation of TiO2-QDs sol in the presence of absolute ethanol. The morphology, crystal structure, chemical composition, optical properties, photocatalytic activity, and stability of Cu2O-O/TiO2-QD heterojunctions were characterized and investigated.

View Article and Find Full Text PDF