Because epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene in glioblastoma (GBM), the development of EGFR inhibitors has become a promising direction for the treatment of GBM. However, due to factors such as limited blood-brain barrier (BBB) permeability and pathway compensation mechanisms, current EGFR inhibitors targeting GBM are not satisfactory. In the previous study, we obtained compound 10c with strong anti-cell proliferation activity.
View Article and Find Full Text PDFPreviously, we reported a novel natural scaffold compound, isobavachin (4',7-dihydroxy-8-prenylflavanone), as a highly potent hURAT1 inhibitor with anti-hyperuricemia effect. However, the structure-activity relationship remains unknown and the poor pharmacokinetic (PK) parameters may limit further clinical use. Herein, a series of isobavachin derivatives were rationally designed and synthesized to explore the structure-activity relationship of isobavachin target hURAT1, and to improve their PK properties.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) inhibitors have been used in clinical for the treatment of non-small-cell lung cancer for years. However, the emergence of drug resistance continues to be a major problem. To identify potential inhibitors, molecular docking-based virtual screening was conducted on ChemDiv and Enamine commercial databases using the Glide program.
View Article and Find Full Text PDFTargeting the epidermal growth factor receptor (EGFR) is one of the potential ways to treat glioblastoma (GBM). In this study, we investigate the anti-GBM tumor effects of the EGFR inhibitor SMUZ106 in both in vitro and in vivo conditions. The effects of SMUZ106 on the growth and proliferation of GBM cells were explored through MTT and clone formation experiments.
View Article and Find Full Text PDFBoth reversible noncovalent inhibitors and irreversible covalent inhibitors targeting tyrosine kinases have their disadvantages. The reversible covalent inhibitors with electrophilic group cyanoacrylamide as warheads reacting with cysteine residues could solve the dilemmas. However, there are still several unresolved issues regarding the electrophilic groups.
View Article and Find Full Text PDFC-Abl is involved in various biological processes and plays an important role in neurodegenerative diseases, especially Parkinson's disease (PD). Previous studies have found that nilotinib shows a neuroprotective effect in cell and animal models of PD by inhibiting the activation of c-Abl. But the low blood-brain barrier permeability and potential toxicity limit the further use of nilotinib in PD.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) inhibitors represent the first-line treatment of non-small-cell lung cancer (NSCLC). However, the emergence of acquired drug resistance and side effects largely encumbered their application in clinic. The emerging technology proteolysis targeting chimera (PROTAC) could be an alternative strategy to overcome these problems.
View Article and Find Full Text PDFAs a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout.
View Article and Find Full Text PDFABTRACTThe epidermal growth factor receptor (EGFR) kinase inhibitors Gefitinib, Erlotinib, Afatinib and Osimertinib have been approved for the treatments of non-small cell lung cancer patients harboring sensitive EGFR mutations, but resistance arises rapidly. To date all approved EGFR inhibitors are ATP-competitive inhibitors, highlighting the need for therapeutic agents with alternative mechanisms of action. Allosteric kinase inhibitors offer a promising new therapeutic strategy to ATP-competitive inhibitors.
View Article and Find Full Text PDFIn this paper, we designed and synthesized two analog compounds M1 and T1 that have a Michael acceptor warhead. Although only slightly diversity existed in the structures of M1 and T1, their inhibitory activities against wild type epidermal growth factor receptor (EGFR) and T790M/L858R mutant epidermal growth factor receptor (EGFR) were significant different. Thus, multiple computational approaches were applied to investigate the interactions between the compounds with EGFR and EGFR in order to explore the effect of different compounds.
View Article and Find Full Text PDFA novel small molecule tyrosine kinase inhibitor 6-[6-Amino-5-[(1R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-3-pyridyl]-1'-methylspiro[indoline-3,4'-piperidine]-2-one (SMU-B) had good activity against ALK (anaplastic lymphoma kinase) and ROS1 (c-ros oncogene 1) targets in non-small-cell lung cancer. The excellent bioactivity of SMU-B highlights the importance of determining its metabolic traits, which could provide meaningful information for further pharmacokinetic studies of SMU-B. In this work, we studied the metabolism of SMU-B in human liver microsomes.
View Article and Find Full Text PDFMarine environments are known to be a new source of structurally diverse bioactive molecules. In this paper, we identified a porphyrin derivative of Pyropheophorbide a (PPa) from the mussel Musculus senhousei (M. senhousei) that showed broad anti-influenza A virus activity in vitro against a panel of influenza A viral strains.
View Article and Find Full Text PDFALK and ROS1 kinases have become promising therapeutic targets since Crizotinib was used to treat non-small-cell lung cancer clinically. Aiming to explore new potent inhibitors, a series of 2-amino-4-(1-piperidine) pyridine derivatives that stabilized a novel DFG-shifted conformation in the kinase domain of ALK were designed and synthesized on the base of lead compound A. Biological evaluation highlighted that most of these new compounds could also potently inhibit ROS1 kinase, leading to the promising inhibitors against both ROS1 and ALK.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer death, and epidermal growth factor receptor (EGFR) kinase domain mutations are a common cause of non-small-cell lung cancer (NSCLC), a major subtype of lung cancers. Patients harboring most of these mutations respond well to the EGFR inhibitors Gefitinib and Erlotinib initially, but soon develop resistance to them due to the emergence of the gatekeeper mutation T790M. The new-generation inhibitors such as AZD9291, HM61713, CO-1686 and WZ4002 can overcome T790M through covalent binding to Cys 797, but ultimately lose their efficacy upon the emergence of the C797S mutation that abolishes the covalent bonding.
View Article and Find Full Text PDFReceptor Tyrosine Kinase inhibitors are the most popular anti-cancer drug types. But the resistance is the major challenge. Our study on the network with 1334 proteins and their 2623 interactions which retrieved from 52 RTKs indicated that most RTKs proteins were the key controllers of the protein-protein network.
View Article and Find Full Text PDFAiming to explore novel BRAF and VEGFR-2 dual inhibitors, a series of 1H-pyrazolo[3,4-d]pyrimidine derivatives were designed, synthesized and biologically evaluated in this study. Most of the synthesized 1H-pyrazolo[3,4-d]pyrimidine compounds displayed moderate to high potent activity in both enzymatic and cellular proliferation assays. Among these compounds, 9e, 9g, 9m and 9u showed remarkably high inhibitory activities against both BRAF and VEGFR-2 kinase comparable to positive control Sorafenib.
View Article and Find Full Text PDFWith the aim of discovering potential and selective inhibitors targeting ROS1 kinase, we rationally designed, synthesized and evaluated two series of novel 2-amino-pyridine derivatives with 1-phenylethoxy at C-3 and C-4 position. The enzymic assays results indicated that six of the new compounds 13b-13d and 14a-14c showed remarkably higher inhibitory activities against ROS1 kinase. The most promising compounds, 13d and 14c displayed the most desired ROS1 inhibitory activity with IC values of 440 nM and 370 nM respectively.
View Article and Find Full Text PDFThe mechanisms of dimerization of α-synuclein from full-length monomers and their structural features have been investigated through molecular dynamics simulations in this study. The dimerization of α-syn plays a critical role in the fibrillogenesis mechanism and could initiate and trigger α-syn to aggregate by conformational transforming. According to the alignment between three regions of α-syn monomer, eight diverse starting structures have been constructed.
View Article and Find Full Text PDFRAF (Ras activating factor) kinases are important and attractive targets for cancer therapy. With the aim of discovering RAF inhibitors that bind to DFG-out inactive conformation created by the movement of Asp-Phe-Gly (DFG), we conducted structure-based drug design using the X-ray cocrystal structures of BRAF (v-raf murine sarcoma viral oncogene homolog B1), starting from bisarylurea derivative based on 1-pyrazolo[3,4-]pyrimidine scaffold . Most of the synthesized compounds showed good to excellent inhibitory activities against BRAF kinase, possessed moderate to potent anti-proliferative activities against four tumor cell lines (A375, HT-29, PC-3 and A549) and good selectivity towards cancer cells rather normal cells (Madin-Darby canine kidney, MDCK).
View Article and Find Full Text PDFThree series of novel quinazoline and pyrido[2,3-d]pyrimidine derivatives were designed, synthesized and evaluated for their ability to inhibit EGFR tyrosine kinase and a panel of five human cancer cell lines (MCF-7, A549, BT-474, SK-BR-3, and MDA-MB-231). Bioassay results indicated that five of these prepared compounds (12c-12e and 13c-13d) exhibited remarkably higher inhibitory activities against EGFR and SK-BR-3 cell line. Compounds 12c and 12e displayed the most potent EGFR inhibitory activity (IC50 = 2.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
September 2015
Matrine is one of the main bioactive alkaloids of Sophora flavescens Aiton, which has been widely used to treat various diseases in China. These diseases include viral hepatitis, liver fibrosis, cardiac arrhythmia, skin diseases, and tumors. However, matrine is also the main toxic compound of this herb, and the available biomarkers are not reliable in detecting or quantifying matrine risk.
View Article and Find Full Text PDFVascular endothelial growth factors receptor-2 (VEGFR-2) inhibitors have been proved as very effective anticancer agents. Structurally similar ligands 1 and 2 show almost the same inhibitory activities against VEGFR-2, but they bind to the enzyme in distinct binding mode. Ligand 1 targets DFG-in active conformation of VEGFR-2, known as Type I inhibitor.
View Article and Find Full Text PDFIn this paper, a specific design strategy targeting c-met kinase was reported based on docking modeling and topomer comparative molecular field analysis (Topomer CoMFA). A novel U-shape conformation which is distinct from the literature was demonstrated by molecular docking among 68 U-shape c-met inhibitors. According to the docking results, two Topomer CoMFA models with high predictive ability were established based on the two fragment rule.
View Article and Find Full Text PDFAcute lung injury is a life-threatening syndrome characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality rate worldwide. The dry root of Peucedanum praeruptorum Dunn has been long used to treat respiratory diseases in China. In the present study, Praeruptorin A, C, D and E (PA, PC, PD and PE), four pyranocoumarins extracted from this herb, have been investigated for the pharmacological effects in experimental lung injury mouse models.
View Article and Find Full Text PDF