Two-dimensional van der Waals (vdW) heterostructures are an attractive platform for studying exchange bias due to their defect-free and atomically flat interfaces. Chromium thiophosphate (CrPS), an antiferromagnetic material, possesses uncompensated magnetic spins in a single layer, rendering it a promising candidate for exploring exchange bias phenomena. Recent findings have highlighted that naturally oxidized vdW ferromagnetic FeGeTe exhibits exchange bias, attributed to the antiferromagnetic coupling of its ultrathin surface oxide layer (O-FGT) with the underlying unoxidized FeGeTe.
View Article and Find Full Text PDFThe manipulation of two-dimensional (2D) magnetic order is of significant importance to facilitate future 2D magnets for low-power and high-speed spintronic devices. van der Waals stacking engineering makes promises for controllable magnetism via interlayer magnetic coupling. However, directly examining the stacking order changes accompanying magnetic order transitions at the atomic scale and preparing device-ready 2D magnets with controllable magnetic orders remain elusive.
View Article and Find Full Text PDFThe discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application.
View Article and Find Full Text PDFOver the past few decades, exciton-polaritons have attracted substantial research interest due to their half-light-half-matter bosonic nature. Coupling exciton-polaritons with magnetic orders grants access to rich many-body phenomena, but has been limited by the availability of material systems that exhibit simultaneous exciton resonances and magnetic ordering. Here we report magnetically-dressed microcavity exciton-polaritons in the van der Waals antiferromagnetic (AFM) semiconductor CrSBr coupled to a Tamm plasmon microcavity.
View Article and Find Full Text PDF2D van der Waals (vdW) transition-metal oxyhalides with low symmetry, novel magnetism, and good stability provide a versatile platform for conducting fundamental research and developing spintronics. Antiferromagnetic FeOCl has attracted significant interest owing to its unique semiconductor properties and relatively high Néel temperature. Herein, good-quality centimeter-scale FeOCl single crystals are controllably synthesized using the universal temperature-oscillation chemical vapor transport (TO-CVT) method.
View Article and Find Full Text PDFIn 2D magnets, interlayer exchange coupling is generally weak due to the van der Waals layered structure but it still plays a vital role in stabilizing the long-range magnetic ordering and determining the magnetic properties. Using complementary neutron diffraction, magnetic, and torque measurements, the complete magnetic phase diagram of CrPS crystals is determined. CrPS shows an antiferromagnetic ground state (A-type) formed by out-of-plane ferromagnetic monolayers with interlayer antiferromagnetic coupling along the c axis below T = 38 K.
View Article and Find Full Text PDF