Polarization and focal length are both critical optical parameters with many applications in many fields, such as optical communications and imaging. The development of metasurfaces provides a new realization of optical systems. In this paper, based on metasurfaces' powerful electromagnetic modulation capability, we integrate polarization conversion with continuous zoom function and propose a dynamic polarization-regulated metasurface with variable focal length.
View Article and Find Full Text PDFThe detection technology of infrared polarization has gained significant attention due to its ability to provide better identification and obtain more information about the target. In this paper, based on the expression of the full polarization state in Stokes space, we designed micro-nano metasurface functional arrays to calculate the polarization state of the incident light by reading the Stokes parameters (a set of parameters that describe the polarization state). Metalens with linear and circular polarization-dependent functions are designed based on the propagation and geometric phases of the dielectric Si meta-atoms in the infrared band, respectively.
View Article and Find Full Text PDFCircularly polarized light (CPL) finds diverse applications in fields such as quantum communications, quantum computing, circular dichroism (CD) spectroscopy, polarization imaging, and sensing. However, conventional techniques for detecting CPL face challenges related to equipment miniaturization, system integration, and high-speed operation. In this study, we propose a novel design that addresses these limitations by employing a quarter waveplate constructed from a diamond metasurface, in combination with a linear polarizer crafted from metallic aluminum.
View Article and Find Full Text PDFThe vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs.
View Article and Find Full Text PDFWe provide a method to regulate intramolecular charge transfer (ICT) through distorting fragment dipole moments based on molecular planarity and intuitively investigate the physical mechanisms of one-photon absorption (OPA), two-photon absorption (TPA), and electron circular dichroism (ECD) properties of the multichain 1,3,5 triazine derivatives o-Br-TRZ, m-Br-TRZ, and p-Br-TRZ containing three bromobiphenyl units. As the position of the C-Br bond on the branch chain becomes farther away, the molecular planarity is weakened, with the position of charge transfer (CT) on the branch chain of bromobiphenyl changing. The excitation energy of the excited states decreases, which leads to the redshift of the OPA spectrum of 1,3,5-triazine derivatives.
View Article and Find Full Text PDFThe absorption spectrum of metasurface absorbers can be manipulated by changing structures. However, narrowband performance absorbers with high quality factors (Q-factor) are hard to achieve, mainly for the ohmic loss of metal resonators. Here, we propose an all-dielectric metasurface absorber with narrow absorption linewidth in the mid-infrared range.
View Article and Find Full Text PDFA polarization sorting metamaterial with polarization filtering and absorption is proposed. When unpolarized incident light strikes the metamaterial, one polarization component is completely absorbed, and the other polarization component is completely transmitted. We achieved an absorption extinction ratio of up to 350 and a transmission extinction ratio of 425 simultaneously in the LWIR.
View Article and Find Full Text PDFReal-time and fast trapping and tagging of microfeatures, such as microparticles and cells, are of great significance for biomedical research. In this work, we propose a novel digital projection lithography technology that integrates real-time, generation of digital masks for particle processing and fluid control into conventional DMD-based projection lithography. With the help of image recognition technology, we rapidly resolve the information of the microparticle profile or channel location, combining the selection of existing masks of different shapes, thus enabling generation of user-customized micro-trap arrays and microfilter arrays for particle trapping and tagging.
View Article and Find Full Text PDFBroadband perfect infrared wave absorption of unpolarized light over a wide range of angles in an ultrathin film is critical for applications such as thermal emitters and imaging. Although many efforts have been made in infrared broadband absorption, it is still challenging to cover the perfect absorption of broadband in the long-wave infrared band. We propose a long-wave infrared broadband, polarization, and incident angle insensitivity metamaterial absorber based on the supercell with four rings of two sizes.
View Article and Find Full Text PDFNot satisfied with the current stage of the extensive research on 3D printing technology for polymers and metals, researchers are searching for more innovative 3D printing technologies for glass fabrication in what has become the latest trend of interest. The traditional glass manufacturing process requires complex high-temperature melting and casting processes, which presents a great challenge to the fabrication of arbitrarily complex glass devices. The emergence of 3D printing technology provides a good solution.
View Article and Find Full Text PDFThe atmospheric window in the infrared (IR) band primarily consists of mid-wave (MWIR, 3-5 μm) and long-wave IR (LWIR, 8-12 μm) bands, also known as the working bands in most of the IR devices. The main factor affecting the device capability includes the absorption efficiency, hence, the absorption material. Herein, a dual-band absorber based on the composite cross structure (CCS) in both MWIR and LWIR bands was proposed, with absorption peaks of 4.
View Article and Find Full Text PDFCapturing polarization information has long been an important topic in the field of detection. In this study, two polarization-dependent broadband absorbers based on a composite metamaterial structure were designed and numerically investigated. Unlike in conventional metamaterial absorbers, the bottom metallic film is functionalized to achieve a polarization response or broadband absorption.
View Article and Find Full Text PDFBroadband absorption is critical for the applications of metamaterial absorbers. In this work, a broadband long-wave infrared (LWIR) absorber with classical metal-dielectric-metal configuration is numerically demonstrated. The absorber consists of single-sized cut-wire arrays that show broadband and high extinction ratio, attributed to polarization-selective simultaneous excitation of propagated and localized surface plasmon resonances.
View Article and Find Full Text PDFBroadband metamaterials absorbers with high absorption, ultrathin thickness and easy configurations are in great demand for many potential applications. In this paper, we first analyse the coupling resonances in a Ti/Ge/Ti three-layer absorber, which can realise broadband absorption from 8 to 12 μm. Then we experimentally demonstrate two types of absorbers based on the Ti/Ge/SiN/Ti configuration.
View Article and Find Full Text PDFMetalens have been recently introduced to overcome shortcomings of traditional lenses and optical systems, such as large volume and complicated assembly. As a proof-of-principle demonstration, we design an all-dielectric converging cylindrical metalens (CML) for working in long-wave infrared regions around 9 µm, which is made up of silicon-pillar on MgF dielectric layer. We further demonstrate the focusing effect of an orthogonal doublet cylindrical metalens (ODCM).
View Article and Find Full Text PDFAll-dielectric metamaterials are a promising low-loss alternative to plasmonic metamaterials for near-infrared perfect reflection, but the working bandwidth is still limited. Here we propose an ultra-wideband all-dielectric metamaterial perfect reflector that has a compact structure consisting of the subwavelength high-index grating, connection layer, and multilayer stack. Such a perfect reflector combines the advantages of quarter-wave design and resonant leaky mode, and covers an extremely wide wavelength range from 966 to 2203 nm under the normal incidence of transverse magnetic wave.
View Article and Find Full Text PDFA dual-band metamaterial absorber based on local surface plasmon resonance is designed, which is composed of a periodic arrangement of stacked nanodisk structures. The structure unit consists of two dielectric layers and three metal layers. Based on the finite difference time domain method, under the condition of vertically incident plane light, two absorption peaks in the mid-wave infrared and long-wave infrared (MWIR/LWIR) are obtained, and the absorption is greater than 98%.
View Article and Find Full Text PDFTwo types of ultra-broadband long wavelength infrared (LWIR) absorbers with small period and super thin thickness are designed. The absorption with high absorptivity and large bandwidth is achieved through combined propagating and localized surfaced plasmon resonances. We first design a three-layer absorber with a Ti-Ge-Ti configuration, the period of the structure is only 1.
View Article and Find Full Text PDFEfficiently exciting surface plasmon polaritons (SPP) is highly desired in many photonic applications, but most approaches (such as prism and grating couplers) cannot control flexibly their SPP excitation directions. While Pancharatnam-Berry (PB) metasurfaces were recently proposed to achieve direction-controllable SPP excitations, such scheme suffers from low-efficiency issue due to both direct reflections at the coupler surface and the mode mismatch between the coupler and the guiding-out plasmonic structure. In this article, we solve these issues via imposing two criterions to guide design both the metasurface and the plasmonic metal, based on which a direction-controllable SPP excitation with very high efficiency can be realized.
View Article and Find Full Text PDFBased on the basic configuration and interference principle of a static step-mirror-based Fourier transform spectrometer, an image segmentation method is proposed to obtain a one-dimensional interferogram. The direct current component of the interferogram is fit using the least squares (LS) method and is subsequently removed. An empirical-mode decomposition-method-based high-pass filter is constructed to denoise the spectrum and enhance the spectral resolution simultaneously.
View Article and Find Full Text PDFTo realize the static state and high throughput of Fourier transform imaging spectrometer (FTIS), a temporal spatial mixed modulated FTIS based on multi-micro-mirror was put forward in this paper, whose interference system was based on Michelson interferometer with a multi-micro-mirror to replace the plane mirror. The remarkable characteristics of this FTIS were no movable parts and slit existing in this system, and the interferogram and image of object could be gained at the same time. The fore-optics system imaged the object on the plane mirror and multi-micro-mirror of the interference system, due to the structure feature of multi-micro-mirror, the optical path difference (OPD) of two imaging beam could be modulated.
View Article and Find Full Text PDFA novel static medium wave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) is conceptually proposed and experimentally demonstrated. In this system, the moving mirror in traditional temporally modulated IFTS is replaced by multi-step micro-mirrors to realize the static design. Compared with the traditional spatially modulated IFTS, they have no slit system and are superior with larger luminous flux and higher energy efficiency.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
January 2014
Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
March 2013
The reflection of the optic system surface and the absorption of the infrared material could reduce the transmission of the incident light in spatially modulated Fourier transform infrared spectrometer. Through the calculation of the transmission function of the interference system and the simulation of the interferogram image and recovered spectrum affected by transmission function, it was indicated that the contrast of the interferogram image declined and the spectral line intensity weakened. The theoretical analysis shows that the contrast of the interferogram image was related to the intensity reflectance of the anti-reflection film, and the attenuation of the spectrum was determined by transmission efficiency concerned with intensity reflectance R1 of the anti-reflection film, intensity reflectance R2 of the beam splitter film, and the absorption coefficient.
View Article and Find Full Text PDF