Publications by authors named "ZhongJun Li"

Background: With the increasing risk of nuclear exposure, more attention has been paid to the prevention and treatment of acute radiation syndrome (ARS). Although amino acids are key nutrients involved in hematopoietic regulation, the impacts of amino acids on bone marrow hematopoiesis following irradiation and the associated mechanisms have not been fully elucidated. Hence, it is of paramount importance to study the changes in amino acid metabolism after irradiation and their effects on hematopoiesis as well as the related mechanisms.

View Article and Find Full Text PDF

Introduction: Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults and the 5-year survival remains low.

Methods: We analyzed the gene expression profiles of the complement and coagulation cascades pathway (CCCP) in 998 bone marrow (BM) and 122 peripheral blood (PB) samples of ALL patients and healthy individuals obtained from the TCGA database and evaluated their clinical significance in terms of being diagnostic and prognostic biomarkers.

Results: We identified 18 CCCP genes (SERPINA1, C5AR1, F5, CD55, PLAUR, C3AR1, THBD, CD59, PLAU, VWF, CFD, F13A1, C1QA, C1QB, C1QC, A2M, SERPINE1 and CR2) differentially expressed in the BM samples of ALL patients compared to healthy individuals.

View Article and Find Full Text PDF

The insufficient activation and impaired effector functions of T cells in the immunosuppressive tumor microenvironment (TME) substantially reduces the immunostimulatory effects of radiotherapy. Herein, a multifunctional nanoradiosensitizer is established by integrating molecularly engineered aptamer precursors into cisplatin-loaded liposomes for enhancing radio-immunotherapy of solid tumors. Exposure to ionizing radiation (IR) following the nanoradiosensitizer treatment would induce pronounced immunogenic death (ICD) of tumor cells through cisplatin-mediated radiosensitization while also trigger the detachment of the aptamer precursors, which further self-assemble into PD-L1/PD-1-bispecific aptamer-based T cell engagers (CA) through the bridging effect of tumor-derived ATP to direct T cell binding onto tumor cells in the post-IR TME in a spatial-temporally programmable manner.

View Article and Find Full Text PDF

Auxetic materials with multifunctional properties are highly sought after for application in modern nano-devices. However, the majority of reported inorganic auxetic materials exhibit low negative Poisson's ratios (NPR), poor flexibility, and limited functionality. In this study, we employ density-functional-theory (DFT) first-principles simulations to design a series of two-dimensional (2D) metal-organic frameworks (MOFs) MCX (M = Cu, Ag, Au; X = O, S, NCN) that display intriguing auxetic behavior, superior flexibility and appropriate photocatalytic water-splitting properties.

View Article and Find Full Text PDF
Article Synopsis
  • This study aimed to investigate the link between advanced maternal age (AMA) and the rates of cesarean sections (CS) among women under China's two-child policy from 2017 to 2020.
  • Researchers analyzed data from 47,654 women, categorizing those aged 35-39 and 40 or older, and found higher CS rates among older mothers, with 64.75% for those aged 40 and above.
  • The findings suggest that women of advanced maternal age are significantly more likely to require a cesarean delivery, highlighting the need for targeted attention to certain risk factors for AMA pregnancies.
View Article and Find Full Text PDF

In-depth comprehension and manipulation of band occupation at metal centers are crucial for facilitating effective adsorption and electron transfer in lithium-oxygen battery (LOB) reactions. Rare earth elements play a unique role in band hybridization due to their deep orbitals and strong localization of 4 f electrons. Herein, we anchor single Ce atoms onto CoO, constructing a highly active and stable catalyst with d-f a dual-band redox center.

View Article and Find Full Text PDF

The continuous production of mature blood cell lineages is maintained by hematopoietic stem cells but they are highly susceptible to damage by ionizing radiation (IR) that induces death. Thus, devising therapeutic strategies that can mitigate hematopoietic toxicity caused by IR would benefit acute radiation syndrome (ARS) victims and patients receiving radiotherapy. Herein, we describe the preparation of an injectable hydrogel formulation based on Arg-Gly-Asp-alginate (RGD-Alg) and Laponite using a simple mixing method that ensured a slow and sustained release of interleukin-12 (IL-12) (RGD-Alg/Laponite@IL-12).

View Article and Find Full Text PDF

In order to promote the high-value utilization of waste phosphogypsum (PG), hydroxyapatite was directly synthesized from PG by acid precipitation-hydrothermal method (PGHAP), which was used for the adsorption of bovine serum albumin (BSA) and lysozyme (LYS). The synthesized PGHAP was characterized by XRD, SEM, FTIR and BET, and the effects of various factors on protein adsorption capacity were studied. The results showed that PGHAP exhibits a clear needle-like morphology, high crystallinity, and an average size of about 200 nm.

View Article and Find Full Text PDF

Thiolate-protected Cu clusters with well-defined structures and stable low-coordinated Cu species exhibit remarkable potential for the CORR and are ideal model catalysts for establishing structure-electrocatalytic property relationships at the atomic level. However, extant Cu clusters employed in the CORR predominantly yield 2e products. Herein, two model Cu(MMI) and Cu(MMI)(BuS) clusters (MMI=2-mercapto-1-methylimidazole) are prepared to investigate the synergistic effect of Cu and adjacent S sites on the CORR.

View Article and Find Full Text PDF

This paper proposes a high-sensitivity microstrip differential sensor for measuring the complex permittivity of liquids. The prototype of the differential sensor was formed by cascading two LC resonators on a microstrip transmission line based on stepped impedance. A strong electric field was found to be distributed in the circular patch of the LC resonator; therefore, a cylindrical micropore was set in the center of the circular LC resonator to measure the dielectric sample, which maximized the disturbance of the dielectric sample on the sensor.

View Article and Find Full Text PDF

Tumor metabolic reprogramming requires high levels of adenosine triphosphate (ATP) to maintain treatment resistance, which poses major challenges to chemotherapy and photothermal therapy. Especially, high levels of ATP promote copper ion efflux for limiting the curative effect of cuproptosis. Here, an HS-responsive mesoporous CuCl(OH)-loading chemotherapeutic cisplatin (CDDP) was synthesized, and the final nanoparticle, CDDP@CuCl(OH)-CDs (CDCuCDs), was encapsulated by electrostatic action with carbon dots (CDs).

View Article and Find Full Text PDF

Oxazocines are key structural intermediates in the synthesis of natural products and pharmaceutical molecules. However, the synthesis of oxazocines especially in a highly enantioselective manner, is a long-standing formidable challenge due to unfavorable energetics involved in cyclization. Herein, a series of new PNP-Ligand P-chiral stereocenter is first designed and synthesized, called MQ-Phos, and successfully applied it in the Pd-catalyzed enantioselective higher-order formal [4+4]-cycloaddition of α, β-unsaturated imines with 2-(hydroxymethyl)-1-arylallyl carbonates.

View Article and Find Full Text PDF

A series of derivatives of salidroside with mirror isomer glucose and different phenyl moieties were synthesized by Schmidt glycosylation in satisfactory yields, and their antioxidant and anti-inflammatory activities were evaluated by using LPS-induced RAW264.7 cells. One of the synthesized derivatives ʟ-Sal-4, bearing ʟ-glycosyl and -OMe modification at the phenyl ring, exhibited high activity in inhibiting the production of pro-inflammatory cytokines and oxidative stress biomarker MDA as well as in enhancing the activity of SOD enzyme, compared with the natural product and its corresponding ᴅ-enantiomer.

View Article and Find Full Text PDF

Background: Thrombocytopenia 2, an autosomal dominant inherited disease characterized by moderate thrombocytopenia, predisposition to myeloid malignancies and normal platelet size and function, can be caused by 5'-untranslated region (UTR) point mutations in ankyrin repeat domain containing 26 (ANKRD26). Runt related transcription factor 1 (RUNX1) and friend leukemia integration 1 (FLI1) have been identified as negative regulators of . However, the positive regulators of are still unknown.

View Article and Find Full Text PDF

The elevated level of hydrogen sulfide (HS) in colon cancer hinders complete cure with a single therapy. However, excessive HS also offers a treatment target. A multifunctional cascade bioreactor based on the HS-responsive mesoporous CuCl(OH)-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@CuCl(OH)-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the HS-driven cuproptosis and mild photothermal therapy.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is a major cause of premature and low-weight births, which increases the risk of necrotizing enterocolitis (NEC); however, the association remains unclear. We report a close correlation between placental polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and NEC. Newborns with previous FGR exhibited intestinal inflammation and more severe NEC symptoms than healthy newborns.

View Article and Find Full Text PDF

Background: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood.

View Article and Find Full Text PDF

A novel method for the glycosylation of selenoglycosides activated by iodosylbenzene was developed. The glycosylation reaction conditions were mild, fast, and efficient, with a high tolerance to diverse protecting groups and a wide substrate scope, which is advantageous for synthesizing complex glycosides. In addition, selenoglycosides were shown to be orthogonal to thioglycosides under the promotion of iodosylbenzene.

View Article and Find Full Text PDF

The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience. In recent years, active micro/nano-bioelectronic devices have undergone significant advancements, thereby facilitating the study of electrophysiology. The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.

View Article and Find Full Text PDF

The efficacy of COVID-19 vaccination relies on the induction of neutralizing antibodies, which can vary among vaccine recipients. In this study, we investigated the potential factors affecting the neutralizing antibody response by combining plasma and urine proteomics and gut microbiota analysis. We found that activation of the LXR/FXR pathway in plasma was associated with the production of ACE2-RBD-inhibiting antibodies, while urine proteins related to complement system, acute phase response signaling, LXR/FXR, and STAT3 pathways were correlated with neutralizing antibody production.

View Article and Find Full Text PDF

Designing two-dimensional (2D) ferromagnetic (FM) semiconductors with elevated Curie temperature, high carrier mobility, and strong light harvesting is challenging but crucial to the development of spintronics with multifunctionalities. Herein, we show first-principles computation evidence of the 2D metal-organic framework Kagome ferromagnet Cr(CN). Monolayer Cr(CN) is predicted to be an FM semiconductor with a record-high Curie temperature of 943 K owing to the use of a single-atom linker (N), which results in strong direct d-p exchange interaction and hybridization between d and p of Cr and N, as well as excellent matching characteristics in energy and symmetry.

View Article and Find Full Text PDF

Doublecortin-like kinase 1 (DCLK) is a microtubule-associated serine/threonine kinase that is upregulated in a wide range of cancers and is believed to be related to tumour growth and development. Upregulated DCLK1 has been used to identify patients at high risk of cancer progression and tumours with chemotherapy-resistance. Moreover, DCLK1 has been identified as a cancer stem cell (CSC) biomarker in various cancers, which has received considerable attention recently.

View Article and Find Full Text PDF

The continuous accumulation of solid industry waste, such as phosphogypsum, has emerged as a global environmental hazard and a significant obstacle to achieving a green and sustainable industry. To convert this industry waste to reusable resources, the development and implementation of simple and cost-efficient purification techniques is crucial. A sedimentation-based separation approach was developed to achieve this objective.

View Article and Find Full Text PDF

The weak electronic interaction at metal-photocatalyst heterointerfaces often compromises solar-to-fuel performance. Here, a trifunctional Schottky junction, involving chemically stabilized ultrafine platinum nanoparticles (Pt NPs, ≈3 nm in diameter) on graphitic carbon nitride nanosheets (CNs) is proposed. The Pt-CN electronic interaction induces a 1.

View Article and Find Full Text PDF

3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an eight-carbon monosaccharide found widely in bacterial lipopolysaccharides (LPSs) and capsule polysaccharides (CPSs). We developed an indirect method for the stereoselective synthesis of α-Kdo glycosides with a C3-p-tolylthio-substituted Kdo phosphite donor. The presence of the p-tolylthio group enhanced the reactivity, suppressed the formation of elimination by-products (2,3-enes), and provided complete α-stereocontrol.

View Article and Find Full Text PDF