Aim: The locus coeruleus (LC) is one of the earliest brain regions affected by phosphorylated tau (p-tau) in Alzheimer's disease (AD). Using the P301S mouse model, we investigated the temporal progression of tau pathology and its functional consequences.
Methods: Immunohistochemistry was used to assess p-tau deposition in LC noradrenergic neurons at 2-3 and 5-6 months.
Regulatory T (T) cells are a specialized CD4 T cell lineage with essential anti-inflammatory functions. Analysis of T cell adaptations to non-lymphoid tissues that enable their specialized immunosuppressive and tissue-supportive functions raises questions about the underlying mechanisms of these adaptations and whether they represent stable differentiation or reversible activation states. Here, we characterize distinct colonic effector T cell transcriptional programs.
View Article and Find Full Text PDFA solvent-free, thermal extraction method for analysis of polycyclic aromatic hydrocarbons (PAHs) in gas phase airborne samples was developed. A fully automated thermal desorber (TD) coupled with highly selective and sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to determine the concentration of trace level PAHs. Air sampling was conducted to tune the sampling and analytical conditions.
View Article and Find Full Text PDFIdentifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone.
View Article and Find Full Text PDFUpon antigenic stimulation, naïve CD4+ T cells can give rise to phenotypically distinct effector T helper cells and long-lived memory T cells. We computationally reconstructed the in vivo trajectory of CD4+ T cell differentiation during a type I inflammatory immune response and identified two distinct differentiation paths for effector and precursor central memory T cells arising directly from naïve CD4+ T cells. Unexpectedly, our studies revealed heterogeneity among naïve CD4+ T cells, which are typically considered homogeneous save for their diverse T cell receptor usage.
View Article and Find Full Text PDFThe locus coeruleus (LC)-prefrontal cortex (PFC) circuitry is crucial for cognition, planning, posture and mobility. This study examines the role of norepinephrine (NE) in elucidating the neurobiological basis of age-related cognitive and motor declines. Aged mice exhibited reduced spatial learning, impaired memory, decreased physical endurance, and notable changes in locomotor behavior.
View Article and Find Full Text PDFThe outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) impairs cognitive functions and peripheral systems, including skeletal muscles. The PS19 mouse, expressing the human tau P301S mutation, shows cognitive and muscular pathologies, reflecting the central and peripheral atrophy seen in AD.
Methods: We analysed skeletal muscle morphology and neuromuscular junction (NMJ) through immunohistochemistry and advanced image quantification.
Aims: This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations.
Methods: Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy.
Objective: To assess pelvic floor muscle (PFM) strength and influencing factors among healthy women at different life stages.
Design: Multicentre cross-sectional study.
Setting: Fourteen hospitals in China.
The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone.
View Article and Find Full Text PDFFollowing infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner.
View Article and Find Full Text PDFWhile regulatory T (T) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct T cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral T cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual T cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings.
View Article and Find Full Text PDFBrainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition.
View Article and Find Full Text PDFEstablishing and maintaining tolerance to self-antigens or innocuous foreign antigens is vital for the preservation of organismal health. Within the thymus, medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (AIRE) have a critical role in self-tolerance through deletion of autoreactive T cells and promotion of thymic regulatory T (T) cell development. Within weeks of birth, a separate wave of T cell differentiation occurs in the periphery upon exposure to antigens derived from the diet and commensal microbiota, yet the cell types responsible for the generation of peripheral T (pT) cells have not been identified.
View Article and Find Full Text PDFRegulatory T (Treg) cells expressing the transcription factor Foxp3 are an essential suppressive T cell lineage of dual origin: Foxp3 induction in thymocytes and mature CD4 T cells gives rise to thymic (tTreg) and peripheral (pTreg) Treg cells, respectively. While tTreg cells suppress autoimmunity, pTreg cells enforce tolerance to food and commensal microbiota. However, the role of Foxp3 in pTreg cells and the mechanisms supporting their differentiation remain poorly understood.
View Article and Find Full Text PDFThe sympathetic nervous system (SNS) regulates skeletal muscle motor innervation and stabilizes the NMJ in health, disease and aging. Previous studies using both chemical (6-hydroxydopamine, 6-OHDA) and microsurgically-induced sympathetic denervation examined the NMJ organization and transmission in the mouse; however, a detailed quantification of the postterminal on larger hindlimb muscles involved in gait mechanics and posture is lacking. The purpose of this study was to determine whether targets of the sympathetic neuron (SN) exhibiting different intrinsic composition such as the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus muscles differ in their response to SN deprivation, and to develop a strategy to accurately quantify the impact of sympathectomy on the NMJ postterminal including those fibers located deeper in the muscle.
View Article and Find Full Text PDFA persimmon tannin- composite powder (PT-A) was investigated for its capacity to protect against ionizing radiation. Human hepatic cells (L02 cells) and human hepatoma cells (HepG2 cells) were pretreated with different concentrations of PT-A or the single compounds (PT or ) and radiated with X-rays. After radiation and post-incubation for 12 h or 24 h, the cell viability, apoptosis, and reactive oxygen species (ROS) production were analyzed by Cell Counting Kit 8 (CCK-8), 2',7'-dichlorfluorescein diacetate (DCFH-DA) staining, and Hoechst 33258 staining/flow cytometry, respectively.
View Article and Find Full Text PDFBackground: The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions such as sarcopenia, the age-dependent decline in muscle mass, force, and power. Devising interventions that can adjust neurotransmitter release to changing physiological demands will require understanding how the sympathetic nervous system affects muscle motor innervation and muscle mass, which will prevent sarcopenia-associated impaired mobility, falls, institutionalization, co-morbidity, and premature death.
View Article and Find Full Text PDFThe immunosuppressive function of regulatory T (T) cells is dependent on continuous expression of the transcription factor Foxp3. Foxp3 loss of function or induced ablation of T cells results in a fatal autoimmune disease featuring all known types of inflammatory responses with every manifestation stemming from T cell paucity, highlighting a vital function of T cells in preventing fatal autoimmune inflammation. However, a major question remains whether T cells can persist and effectively exert their function in a disease state, where a broad spectrum of inflammatory mediators can either inactivate T cells or render innate and adaptive pro-inflammatory effector cells insensitive to suppression.
View Article and Find Full Text PDFActivation of the STAT5 transcription factor downstream of the Interleukin-2 receptor (IL-2R) induces expression of Foxp3, a critical step in the differentiation of regulatory T (Treg) cells. Due to the pleiotropic effects of IL-2R signaling, it is unclear how STAT5 acts directly on the Foxp3 locus to promote its expression. Here, we report that IL-2 - STAT5 signaling converged on an enhancer (CNS0) during Foxp3 induction.
View Article and Find Full Text PDF